Мир астрономии | страница 22



Действительно, задача о ранней, «планковской», Вселенной исключительно сложна. Мы просто не знаем, как ведет себя вещество, что оно собой представляет в этих бесконечно малых масштабах длин, сочетающихся с бесконечно большими плотностями и температурами.

Экспериментаторы «добрались» пока до длин порядка лишь 10>–16 см. Это мир элементарных частиц, сверхвысоких энергий, и именно поэтому физика ранней Вселенной теснейшим образом смыкается с физикой микрокосмоса. К сожалению, как сказал лауреат Нобелевской премии по физике С. Вайнберг, «незнание микроскопической физики стоит как пелена, застилающая взор при взгляде на самое начало».


Остатки взрыва сверхновой. Снимок в рентгеновских лучах.

Космология оперирует с еще меньшими расстояниями и большими энергиями, чем те, что привычны для физики элементарных частиц. Ведь рассматривая самые ранние этапы, мы неизбежно приходим к какому-то моменту времени (порядка планковского), когда классическая ОТО неприменима. Здесь предстоит еще огромная работа. Как заметил в одной из своих статей академик Я. Зельдович, опасности безработицы в космологии не существует.

Посмотрим, что говорят о веществе ранней Вселенной самые общие принципы и уравнения современной физики, а потом поговорим немного об «очень-очень ранней» Вселенной, некоторых перспективах и трудностях в решении этой увлекательной задачи. При этом мы не сможем обойтись без знания современной классификации элементарных частиц. Именно о них сейчас и пойдет речь. Следует, правда, отметить, что понятие элементарности в последние годы сильно пошатнулось.


Микрофизика

Итак, два новых определения: адроны и лептоны. Адроны — сильновзаимодействующие частицы, образующие атомные ядра — протоны и нейтроны, а также нестабильные тяжелые частицы пи-мезоны, к-мезоны, лямбда-гипероны и другие. Лептоны не участвуют в сильных взаимодействиях и объединяют в один класс большинство легких частиц — нейтрино, мюоны и электроны; есть еще, разумеется, и безмассовые фотоны.

Чрезвычайно важно то обстоятельство, что адроны взаимодействуют друг с другом гораздо сильнее, чем лептоны. Химические связи между атомами в молекулах во много миллионов раз слабее, чем силы, удерживающие атомное ядро от распада. Ядерные силы внутри ядра намного, примерно в 100 раз, сильнее электрических сил отталкивания. Ведь протоны согласно закону Кулона должны были бы разлетаться друг от друга, так как они несут положительный заряд. Но, как только им удается сблизиться достаточно тесно (атомное ядро!), главную роль начинают играть так называемые сильные взаимодействия; именно они и стабилизируют структуру атомного ядра, свободно преодолевая взаимное отталкивание десятков протонов. Но при повышении температуры, ближе к началу мира, атомные ядра уже становятся неустойчивыми. Более того, при высоких температурах начинает проявляться неэлементарность адронов.