Эта странная математика. На краю бесконечности и за ним | страница 8




С одной стороны, есть сторонники платонизма, считающие математику уже существующей территорией, которая лишь ждет, пока мы ее исследуем. С другой стороны, есть те, кто утверждает, что мы изобретаем математику постепенно, по мере возникновения необходимости в ней. И у той и у другой точки зрения есть слабые стороны. Платоники не в силах толком объяснить, где именно вне физической вселенной и человеческого разума существуют такие вещи, как число пи. А их оппоненты не могут отрицать тот факт, что планеты, например, будут вращаться вокруг Солнца по эллиптической орбите независимо от наших математических расчетов. Третья философская школа занимает промежуточную позицию: ее представители считают, что математика далеко не так эффективно описывает реальный мир, как это иногда пытаются представить. Да, уравнения помогают нам направить космический аппарат на Луну или Марс, спроектировать новый самолет или предсказать погоду на несколько дней вперед. Но эти уравнения – всего-навсего приближение той реальности, которую они призваны описывать; к тому же они применимы лишь к малой части явлений, происходящих вокруг нас. Превознося успехи математики, сказал бы реалист, мы умаляем значение огромного количества явлений, которые слишком сложны или плохо изучены для того, чтобы укладываться в математическую форму, либо по самой своей природе не поддаются такому анализу.

А может быть, на самом деле вселенная по своей природе не математична? В конце концов, ни в космосе, ни в содержащихся в нем объектах нет ничего явно математического. Мы, люди, пытаемся дать наблюдаемым нами явлениям рациональное объяснение, упростить их, чтобы смоделировать какие-то аспекты устройства вселенной. При этом математика оказывает нам неоценимую помощь в познании этой самой вселенной. Но это не обязательно означает, что математическая наука – нечто большее, чем инструмент, созданный нами для собственного удобства. Однако же, если математики не было во вселенной изначально, как получилось, что мы смогли изобрести ее и применить для такой цели?

Всю математику можно грубо разделить на две области – прикладную и чистую[4]. Чистая математика – это наука ради науки. Прикладные математики применяют свои знания для решения практических задач. Но зачастую достижения чистой математики, не имеющие, казалось бы, никакого практического применения, позднее оказываются на удивление полезными для ученых-практиков и инженеров. В 1843 году ирландский математик Уильям Гамильтон сформулировал идею кватернионов – обобщений обычных чисел на четырехмерное пространство. На тот момент они не представляли никакого практического интереса, но спустя больше ста лет нашли широкое применение в робототехнике, компьютерной графике и видеоиграх. Задача о плотной упаковке сфер в трехмерном пространстве, которую впервые попытался решить Иоганн Кеплер в 1611 году, используется для того, чтобы более эффективно передавать информацию по шумным каналам связи. Исследования в теории чисел – самой чистой математической дисциплине, которую считали почти не имеющей практической ценности, – привели к важным открытиям в области разработки криптостойких шифров. А новая геометрия Бернхарда Римана, изучавшая искривленные поверхности, более пятидесяти лет спустя оказалась идеальной основой для создания общей теории относительности Эйнштейна – новой теории тяготения.