Эта странная математика. На краю бесконечности и за ним | страница 32
Все, что нам осталось, – это вероятность, да и с той нет полной ясности. Существует несколько интерпретаций. Самое распространенное толкование – частотное. Согласно ему, вероятность наступления события – это предел (то есть значение, к которому нечто стремится) относительной частоты наступления события. Чтобы определить вероятность события, “фреквентист[13]” должен многократно повторять эксперимент и смотреть, сколько раз произошло нужное событие. Например, если оно происходит в 70 % случаев, значит, его вероятность 70 %. В случае с идеализированной математической монетой вероятность выпадения орла составляет ровно S, поскольку чем больше монету подбрасываешь, тем больше частота выпадения орла стремится к S. У реальной, физической монеты эта вероятность будет другой, не ровно S. Причин тому несколько. Частично влияет на результат аэродинамика броска и то, что “орел” у большинства монет тяжелее, чем выбитый на другой стороне рисунок. Имеет значение также, какой стороной вверх монету подбрасывают: вероятность, что она упадет той же стороной вверх, равна примерно 51 %, поскольку при обычном броске шансы перевернуться в воздухе четное количество раз у нее чуть выше. Но, рассматривая математическую, идеальную монету, все эти факторы можно смело игнорировать.
Говоря о вероятности какого-либо события, “фреквентисты” имеют в виду шансы его наступления при многократном повторении одного и того же эксперимента. Но бывают случаи, когда такая стратегия бесполезна, например когда речь идет о событии, которое может произойти только один раз. Альтернативой тогда служит байесовский метод, названный так в честь английского ученого-статистика XVIII века Томаса Байеса. Расчет вероятности этим методом основан на степени нашей уверенности в определенном результате, то есть вероятность рассматривается как субъективное понятие. Например, если синоптик в прогнозе погоды говорит о “70-процентной вероятности осадков”, по сути это означает, что он на 70 % уверен, что пойдет дождь. Основная разница между частотной и байесовской вероятностью в том, что синоптик не может “повторить” погодный эксперимент – ему нужно оценить вероятность дождя в одном конкретном случае, а не выдать результаты многократно поставленных опытов. Для прогнозирования могут использоваться гигантские массивы данных, в том числе информация о похожих ситуациях, но ни в одной из них условия не будут абсолютно идентичными, так что синоптики вынуждены строить прогнозы исходя из байесовской вероятности, а не из частотной.