Эта странная математика. На краю бесконечности и за ним | страница 16



Увлечение Хинтона четвертым измерением началось еще во время преподавания в Англии, когда многие из писавших об этом предполагали наличие связи между высшими измерениями и спиритуализмом. В 1878 году профессор астрономии Лейпцигского университета Фридрих Цёлльнер опубликовал в The Quarterly Journal of Science (редактором там был химик и известный спиритуалист Уильям Крукс) статью “О пространстве четырех измерений”. Излагая в начале статьи математическую основу своей теории, Цёлльнер сделал отсылку к историческому докладу Бернхарда Римана “О гипотезах, лежащих в основании геометрии”, опубликованному в 1868 году, спустя два года после смерти автора и через 14 лет после того, как он был впервые прочитан Риманом в виде лекции, когда тот был еще студентом Гёттингенского университета. Риман развил идею, впервые высказанную его научным руководителем в Гёттингене, великим Карлом Гауссом, о том, что трехмерное пространство может иметь кривизну (точно так же как двумерная поверхность, скажем, сфера), и обобщил понятие кривизны на пространства произвольной размерности. Результат, известный как эллиптическая, или риманова, геометрия, позднее лег в основу общей теории относительности Эйнштейна. Цёлльнер также заимствовал предположение молодого ученого Феликса Клейна, занимавшегося проективной геометрией: в своей опубликованной в 1874 году статье тот показал, что развязывать узлы и разъединять продетые одно в другое кольца возможно, просто перенося их в четвертое измерение и там переворачивая. Так, начав с прочного математического обоснования, Цёлльнер подготовил почву для изложения своей теории – объяснения того, как ду́хи, существующие, по его мнению, в высших измерениях, способны выполнять удивительные трюки (особенно с развязыванием узлов), которые он наблюдал на спиритических сеансах знаменитого медиума Генри Слейда (разоблаченного впоследствии как мошенника и шарлатана). Как и Цёлльнер, Хинтон считал, что в рамках трехмерного восприятия действительности нас удерживает только сила привычки и что четвертое измерение, возможно, находится рядом с нами – нужно лишь научиться его видеть.

Хотя представить себе четырехмерный объект затруднительно, нарисовать его плоское изображение довольно легко, особенно если это четырехмерный аналог куба, для которого Хинтон придумал термин “тессеракт”. Для начала нарисуйте два квадрата, слегка отступающие друг от друга, затем соедините их углы прямыми линиями. У вас получится изображение куба в перспективе – ваше воображение придает ему объем, как бы разделяя квадраты в пространстве. Теперь нарисуйте два куба, соединенные углами. Будь у нас четырехмерное зрение, мы увидели бы их как два куба, разделенные в четвертом измерении, – то есть как перспективное изображение тессеракта. К сожалению, такие плоские изображения четырехмерных объектов слабо помогают нам понять, как те выглядят в действительности. Хинтон осознал, что научиться видеть в четырех измерениях легче, наблюдая трехмерные модели, которые при вращении демонстрируют различные аспекты четырехмерных объектов: по крайней мере, при этом мы рассматриваем перспективное изображение реального объекта, а не перспективное изображение другого перспективного изображения. Для этого он придумал хитроумное наглядное пособие в виде набора разноцветных деревянных кубиков с гранью в один дюйм. Полный набор состоял из 81 кубика, раскрашенного в 16 цветов, из 27 “плиток”, использовавшихся для демонстрации аналогии с трехмерными объектами, которые можно построить в двумерном пространстве, и из 12 разноцветных “каталожных” кубов. Путем сложных манипуляций с кубиками, детально описанных им в книге “Четвертое измерение”, впервые опубликованной в 1904 году, Хинтон сумел представить различные поперечные сечения тессеракта, а затем, запомнив, какие именно кубы и в какой ориентации составляют эти сечения, заглянуть в многомерный мир.