Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности | страница 30



Правда в том, что все может стать еще интереснее. Давайте условимся так. Пусть все мужчины в комнате, за исключением юного Джонни, посещали мастер-классы по теории игр, по принятию решений и даже по выбору оптимальных вариантов в ситуациях с переменными параметрами. Они пытаются понять, как им поступить, и все заняты сложными расчетами. Они говорят себе: «Слать листок А. мы не будем, поскольку, по вышеупомянутым причинам, она нас не выберет – и нас переведут в следующий раунд, где мы вряд ли будем более состоятельны». И так далее. Пока все думают примерно так, Джонни просто не использует свой мыслительный аппарат. Взвешивать варианты? Это не для него. Он просто смотрит вокруг, видит А., решает, что ему нравится то, что он видит, шлет ей листок – и ему действительно удается ее завоевать, ведь он был единственным, кто к ней обратился! (Кстати, эта история может объяснить характер некоторых странных пар, которые вам, вероятно, известны.)

Да, Джонни завоевал А., потому что ему не хватало искушенности. Когда я провожу мастер-классы для руководителей, мне нравится знакомить их с эквивалентной экономической моделью, при которой наименее умный игрок (эту роль я играю сам) получает наивысшую выгоду в состязании с довольно-таки умными соперниками (которыми выступают директора).

Равновесие Нэша (и храбрая львица)

Кажется, пришло время дать определение одной из самых базовых концепций в теории игр: равновесию Нэша. Только позвольте мне сделать это слегка неточно (порой небольшая неточность помогает избежать пространных объяснений).

Равновесие Нэша – это ситуация, при которой ни один из игроков не получает выгоды от смены текущей стратегии, при условии, что они могут контролировать только свои собственные решения.

Мы могли бы сказать об этом так.

Равновесие Нэша – это набор стратегий, менять которые не станет ни один участник игры, даже заблаговременно узнав стратегии других игроков, – при условии, что каждый отвечает только за свои собственные решения.

Например, стратегия уступок в игре по созданию пар – это не равновесие Нэша. Ведь если бы все игроки должны были пойти на уступки, вам бы этого делать не следовало – напротив, вам следовало бы послать свой листок А.!

Уверен, что вы, мой разумный читатель, уже поняли: стратегия, по которой все игроки должны были отправить свои листки А., – это тоже не равновесие Нэша.

А как насчет обеда с друзьями, разделившими счет? Стал бы заказ дешевых блюд равновесием Нэша? А дорогих блюд? Что, если бы каждый заказал самое дорогое блюдо в меню – оказалось бы это равновесием Нэша? Подумайте над этим, пока не будете уверены в ответе.