Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности | страница 14



4. Игры, в которые играют люди

В следующей главе мы узнаем о нескольких играх – и забавных, и познавательных, расширим наш игровой лексикон, узнаем кое-что новое и поучимся тому, как мыслить стратегически, а помимо этого познакомимся с тем, кого я считаю «Стратегом года». Итак, играем!

Игра 1. Пиратская забава

«Доверять ненадежным можно всегда. Ты всегда можешь положиться на то, что они ненадежны. А вот надежным… о, им ни в коем случае нельзя доверять».

Капитан Джек Воробей. «Пираты Карибского моря»

Банда пиратов после тяжелого рабочего дня возвращается домой и несет 100 золотых дублонов, которые предстоит разделить между пятью лучшими пиратами: это Эйб, Бен, Кэл, Дон и Эрн. Эйб – глава банды, а Эрн – подчиненный самого низкого ранга.

Несмотря на иерархию, группа демократична, и именно потому добычу решают делить по следующему принципу. Эйб предлагает формулу распределения, и все пираты (включая его самого) за нее голосуют. Если большинство ее одобряет, идея воплощается в жизнь – и все, конец игры; а если нет, то Эйба бросают в океан (даже пираты-демократы довольно непокорны). И если Эйба больше с нами нет, настает очередь Бена. Он предлагает, пираты голосуют снова. Обратите внимание: теперь возможно равенство голосов. Предположим, что в таком случае предложение отвергается, а того, кто его выдвинул, бросают в океан (хотя есть и другая версия игры, при которой за предложившим остается право решающего голоса). Итак, если предложение Бена получает одобрение большинства пиратов, его идею воплощают в жизнь; если нет, его бросают в океан, и свое предложение для коллектива (уже не столь большого) будет выдвигать Кэл. И так далее.

Игра продолжается до тех пор, пока какое-либо предложение не примут большинством голосов. Если этого не случится, Эрн остается последним пиратом и забирает все 100 дублонов.

Прежде чем читать дальше, пожалуйста, остановитесь и немного подумайте о том, чем должна закончиться эта игра. И учтите: пираты умны и жадны.


Математическое решение

Математики решают этот вопрос при помощи «обратной индукции» – идут от конца к началу. Предположим, что мы находимся на той стадии игры, когда отвергнуты идеи и Эйба, и Бена, и Кэла – да, Кэл тоже подкачал. Остались только Дон и Эрн, и теперь решение очевидно: Дон должен предложить Эрну забрать все 100 дублонов – или тоже отправиться на свидание к акулам (напомним, равенство голосов означает, что предложение провалено), которое долго не продлится. Дон – умный пират и предлагает Эрну забрать всю добычу.