Hello World. Как быть человеком в эпоху машин | страница 41
Тот же принцип применим и к большой группе деревьев принятия решений, которые все вместе образуют случайный лес (забавный термин, не правда ли?). Алгоритмы формируют прогнозы на основе шаблонов, составленных при обработке массива данных, поэтому случайный лес — это алгоритм машинного обучения, который подпадает под более широкое понятие искусственного интеллекта. (В главе “Власть” мы уже упоминали “машинное обучение”, и нам еще не раз встретятся различные алгоритмы того же типа, но сейчас хотелось бы отметить, как солидно это звучит — при том что, в сущности, это просто знакомая вам со школы блок-схема, слегка приукрашенная математическими преобразованиями.) Алгоритмы случайного леса не раз доказали свою высокую эффективность в самых разных сферах жизни. С их помощью Netflix, анализируя ваши уже известные предпочтения>[103], подсказывает вам, что посмотреть, Airbnb выявляет мошеннические аккаунты>[104], а в медицине ставятся диагнозы (об этом нам предстоит поговорить в следующей главе).
Когда надо определить меру пресечения для правонарушителя, оказывается, что алгоритмы случайного леса имеют два колоссальных преимущества перед своими живыми “коллегами”. Первое — при равных условиях программа всегда выдает одинаковые решения. Гарантируется согласованность решений, но не в ущерб персональному рассмотрению дел. Второе важнейшее достоинство заключается в том, что прогнозы алгоритма еще и намного более точные.
Люди против машин
В 2017 году ученые решили проверить, насколько компьютерные прогнозы могут конкурировать с решениями судей>[105].
Для эксперимента исследователям предоставили доступ к досье всех, кто был арестован в Нью-Йорке за пятилетний период с 2008 по 2013 год. За это время по вопросу об освобождении под залог перед судом предстали три четверти миллиона человек, так что материала для тестирования программы в противоборстве ее с судом человеческим было предостаточно.
В нью-йоркском судопроизводстве по этим делам алгоритмы не использовались, но исследователи взялись за создание множества деревьев принятия решений задним числом, чтобы проверить, насколько хорошо алгоритм справился бы с прогнозом рисков нарушения обвиняемыми условий освобождения под залог. В компьютер загрузили информацию о подсудимых — истории приводов в полицию, сведения о последнем преступлении и прочее. Машина рассчитала вероятность того, что обвиняемый не будет соблюдать условия освобождения под залог.