Уродливая Вселенная | страница 7
Однако мы не строим теории, записывая допущения, а затем выводя наблюдаемые следствия в виде последовательного ряда теорем и доказательств. В физике теории почти всегда начинают свой путь как разрозненные лоскутки идей. Разгребать бардак, разводимый физиками при разработке теорий, и находить точный набор предположений, из которого может быть получена цельная теория, часто достается нашим коллегам, специализирующимся на математической физике – области математики, не физики.
В целом физики и математики неплохо договорились о разделении труда: первые жалуются на дотошность вторых, а вторые возмущаются небрежностью первых. Впрочем, с обеих сторон мы точно знаем, что прогресс в одной области подгоняет прогресс в другой. Начиная с теории вероятностей и теории хаоса и заканчивая квантовыми теориями поля, лежащими в основе современной физики элементарных частиц, математика и физика всегда шли рука об руку.
Но физика – не математика. Помимо внутренней непротиворечивости (не должно получаться выводов, противоречащих друг другу) от успешной теории также требуется согласованность с результатами наблюдений (не должно быть противоречий с данными). Для области физики, в которой работаю я, где мы имеем дело с самыми фундаментальными вопросами, это требование жесткое. Существует так много данных, что выполнять все необходимые вычисления для свежепредложенных теорий попросту невозможно. А еще и нецелесообразно, поскольку можно срезать путь: мы сначала демонстрируем, что новая теория согласуется с хорошо подтвержденными старыми в пределах погрешности измерений, и тем самым воспроизводим результаты старых теорий, а затем нам остается только добавить вычисления для того, что еще новая теория в силах объяснить.
Показать, что новая теория воспроизводит все достижения успешных старых, порой чрезвычайно сложно. А все потому, что новая теория может использовать совершенно иной математический аппарат, совсем не похожий на аппарат старой теории. Чтобы исхитриться продемонстрировать, что обе тем не менее дают одинаковые предсказания для уже сделанных наблюдений, часто требуется отыскать подходящий способ переформулировать новую теорию. Это несложно в тех случаях, когда новая теория напрямую заимствует математику старой, но задача оборачивается огромной проблемой, если используется принципиально новый математический аппарат.
Эйнштейн, например, бился не один год, чтобы доказать, что общая теория относительности, его новая теория гравитации, воспроизводит успехи предшественницы – теории тяготения Ньютона. Проблема состояла не в том, что теория Эйнштейна была неверна, – он не знал, как в ней найти ньютоновский гравитационный потенциал. Вся математика у него была правильной, но отсутствовало отождествление с реальным миром. Только после нескольких неудачных попыток он нащупал верный способ это сделать. Правильная математика – лишь часть правильной теории.