Идеальная ставка | страница 11
На рулетке Уилсона наиболее часто выпадающим числом было 19, но Этье не нашел доказательств того, что ставка на него была бы выгодна в долгосрочной перспективе. Несомненно, в поведении рулетки присутствовала некая закономерность, однако «счастливых» чисел на ней не было. Этье понимал, что большинству игроков пользоваться его методом уже поздно: с тех пор как Хибс и Уолфорд сорвали в Рино большой куш, рулетки со смещением практически исчезли из казино. Но рулетке недолго оставалось быть непобедимой.
Находясь на самом глубоком уровне незнания и не понимая причин отдельных явлений, единственное, что мы можем сделать, – осуществить наблюдение за множеством явлений и понять, существует ли между ними закономерность, она же паттерн. Как мы видим, этот статистический подход хорошо работает с дефектной рулеткой. Не имея знаний о ее физических особенностях, мы тем не менее можем прогнозировать ее поведение.
Но что, если отсутствует смещение в рулетке или недостает времени для сбора данных? Троица, игравшая в Ritz, не следила за спинами в надежде найти дефект рулетки. Игроки наблюдали за траекторией шарика в процессе вращения рулетки. Иными словами, они проскочили не только третий, но и второй уровень невежества по Пуанкаре.
А это вам не шутки. Ведь даже если мы досконально разберем все физические процессы, воздействующие на движущийся шарик, то все равно не сможем точно спрогнозировать, где он остановится. В отличие от случая с банкой краски в бассейне причины явления не слишком сложны, а, наоборот, слишком ничтожны, чтобы их заметить. Малейшие различия в начальной скорости шарика способны существенно повлиять на характер его движения. Пуанкаре утверждал, что изменение в исходном состоянии шарика в рулетке – настолько незначительное, что ускользает от нашего внимания, – приводит к эффекту, не заметить который уже невозможно. И именно этот эффект мы приписываем игре случая.
Проблема, известная как «чувствительная зависимость от начальных условий», заключается в том, что, даже если мы соберем детальную информацию о некоем явлении – будь то вращение рулетки или движение тропического шторма, – малейшее упущение обернется слишком серьезными последствиями. За 70 лет до того, как математик Эдвард Лоренц задал на лекции свой знаменитый вопрос: «Может ли взмах крыльев бабочки в Бразилии запустить торнадо в Техасе?» – Пуанкаре уже в общих чертах обрисовал «эффект бабочки».
Исследования Лоренца, из которых впоследствии выросла теория хаоса, фокусировались главным образом на прогнозировании. Лоренцем двигало стремление научиться более точно предсказывать погоду и заглядывать в будущее. Пуанкаре интересовало нечто противоположное: как много времени требуется для того, чтобы процесс стал непредсказуемым? И можно ли считать таковым движение шарика в рулетке?