Человеческие сети | страница 9



Говоря о несоразмерном присутствии, я имею в виду важное явление, известное как «парадокс дружбы»; на него указал в 1991 году социолог Скотт Фелд{11}.

У вас никогда не возникало впечатления, что у других людей друзей намного больше, чем у вас? Если возникло, вы не одиноки. В среднем друзей у наших друзей действительно больше, чем у любого типичного представителя населения. Это и есть парадокс дружбы.

На рисунке 2.1 мы видим парадокс дружбы в сети дружеских связей среди старшеклассниц; этот пример взят из классической работы Джеймса Коулмана{12}. Здесь представлены четырнадцать девочек. Для девяти из них верно утверждение, что у их подруг в среднем больше подруг, чем у них самих. У двух — то же количество подруг, что и у их подруг в среднем, и лишь три девочки пользуются большей популярностью, чем их подруги в среднем{13}.


Рис. 2.1. Парадокс дружбы. Данные из исследования Джеймса Коулмана 1961 года, посвященного школьной дружбе. Каждый узел (кружок) обозначает девочку, а звено между ними указывает на дружбу между двумя девочками. Парадокс заключается в том, что большинство девочек оказываются менее популярными, чем их подруги. Первое из чисел, присвоенных каждой девочке, означает количество ее подруг, а второе — среднее количество подруг, имеющихся у ее подруг. Например, у девочки в нижнем левом углу две подруги, а у этих подруг — 2 и 5 подруг, что в среднем дает число 3,5. Таким образом, 2/3,5 означает, что сама она пользуется меньшей популярностью, чем ее подруги в среднем. То же самое верно для 9 из 14 девочек, и лишь 3 более популярны, чем их подруги, а 2 равны по популярности своим подругам.


Парадокс дружбы легко понять. Наиболее популярные личности оказываются в друзьях у очень многих людей, а имеющие мало друзей, естественно, фигурируют в числе друзей у сравнительно меньшего количества людей. Люди, имеющие множество друзей, присутствуют слишком часто среди чьих-то друзей относительно их собственной доли в населении, тогда как люди, имеющие очень мало друзей, напротив, присутствуют там слишком редко. Человека, имеющего десятерых друзей, считают своим другом вдвое больше людей, чем другого человека, у которого друзей всего пять.

В математическом смысле этот парадокс лишен особой глубины — впрочем, как и большинство парадоксов. Вместе с тем он дает о себе знать почти во всех наших взаимодействиях. Каждый, кому довелось быть родителем — да даже и ребенком! — наверняка не раз слышал фразы: «у всех остальных в школе есть…» или «всем остальным в школе разрешают…». Хотя подобные утверждения, как правило, и лживы, они часто отражают наши ощущения. С наиболее популярными учениками ведь дружат очень многие дети, и потому если у этих всеобщих любимчиков появляются одинаковые увлечения, тогда остальные дети приходят к выводу, что этим увлекаются абсолютно все. Популярные люди непропорционально часто определяют представления других и задают нормы поведения для остальных.