Человеческие сети | страница 18




Рис. 2.5. Два человека, Нэнси и Уоррен, обладают степенью 2. Однако они различаются количеством связей их друзей — и потому их абсолютные положения в сети различны.


На этом можно было бы остановиться: вместо того чтобы просто считать друзей, мы могли бы считать, сколько дополнительных друзей «приводит» за собой каждый из этих друзей, — иными словами, подсчитывать друзей друзей — назовем их «друзьями второй степени». Для начала хорошо было бы не ограничиваться подсчетом непосредственных друзей, а считать еще и их друзей, тогда сразу же видно, что у Нэнси больше возможностей для распространения информации, чем у Уоррена. Но зачем останавливаться на этом? Почему не учесть еще и «друзей третьей степени»? Пускай дружба Нэнси с Эллой и не столь плодотворна, если иметь в виду наличие друзей третьей степени, зато ее дружба с Майлсом ведет к еще большему числу связей. Удалившись от Нэнси на три шага, мы уже охватим всех, кроме Уоррена. Отойдя же на три шага от Уоррена, мы насчитаем дополнительно всего пятерых человек, тогда как, удаляясь от Нэнси, мы насчитали шестнадцать человек. Таким образом, Нэнси — гораздо более перспективный кандидат для распространения информации, чем Уоррен, хотя оба они обладают одинаковой степенью.

Как же выявлять эти качества в большой сети, где можно продолжать такой подсчет до бесконечности? Существуют различные способы, но лучше я опишу самую суть задачи. Давайте начнем с того, что просто учтем количество друзей первой степени (непосредственных). Итак, как мы видим из рисунка 2.5, и Нэнси, и Уоррен получат по 2 балла, поскольку у каждого из них — по два друга. Далее, учтем друзей второй степени. Но должны ли мы наделять их таким же значением, что и друзей первой степени? Например, если мы представим себе, что информация начнет распространяться от Нэнси, то, вероятнее всего, она перейдет от Нэнси к Майлсу, затем к кому-нибудь из друзей Майлса, — поскольку она должна вначале перейти от Нэнси к Майлсу, а затем дальше — уже от Майлса. Пожалуй, менее вероятно, что ей понадобится для распространения два шага, а не один шаг, — скажем, в два раза менее вероятно. Так что пока давайте присвоим другу друга значение вдвое меньшее, чем непосредственному другу. У Нэнси одиннадцать друзей второй степени, поэтому присваиваем ей 11/2 баллов, учитывая количество друзей ее друзей. А у Уоррена имеется только один друг второй степени, поэтому он получает 1/2. Итак, у Нэнси пока что 7,5 балла, если считать ее друзей первой и второй степени, а у Уоррена — только 2,5. Далее мы переходим к подсчету друзей третьей степени: у Нэнси их трое, а у Уоррена — двое. Опять-таки присвоим новым друзьям значение вдвое меньшее по сравнению с предыдущим уровнем, то есть по 1/4. Таким образом, к уже набранным очкам Нэнси прибавится еще 3/4, а к прежним очкам Уоррена — 2/4, после чего общее число баллов у Нэнси уже достигло 8,25, а у Уоррена оно выросло до трех. Продолжая подсчет таким способом, мы сможем количественно оценить, насколько охват людей в сети у Нэнси больше, чем у Уоррена.