Легко ли плыть в сиропе. Откуда берутся странные научные открытия | страница 35



Этот белок знаменит тем, что он – одна из "шестеренок" циркадных часов и отвечает за их подстройку по солнцу. Однако криптохром еще и фоторецептор, причем единственный, способный давать долгоживущую пару радикалов. Время ее жизни, как и способность к образованию связей с другими молекулами, зависит от спинового состояния образовавшихся неспаренных электронов. Магнитное же поле способно это состояние менять. Поэтому изменения в поведении криптохрома могут лежать в основе магниторецепции. В таком случае обладающие этой способностью животные и насекомые непосредственно видят магнитное поле. Нам – существам, лишенным такого чувства, – понять, как все это выглядит, невозможно. Но можно пофантазировать примерно так. При повороте головы меняется ориентация молекул криптохрома относительно геомагнитного поля. Тогда, согласно базовой гипотезе радикальной магниторецепции, меняется действие этого рецептора: пары радикалов схлопываются либо какой-то белок отцепляется от него. Коль скоро криптохром связан с восприятием синего и ультрафиолетового света, то формируемая им картинка в мозгу становится более или менее синей в зависимости от того, как изменилось положение глаза относительно магнитного поля. Птица фиксирует это изменение и выправляет курс.

Проверяется световая гипотеза просто. Птиц или дрозофил приучают реагировать на магнитное поле, затем выключают синий свет, и сразу вся выучка пропадает, когда его снова включают – возвращается. Другой способ: взять нормальных дрозофил и дрозофил с дефектным геном, кодирующим криптохром, и посмотреть, как магнитное поле влияет на их поведение – например, способность к ухаживанию за самками[32]. У нормальных дрозофил сильное поле резко усиливает любвеобильность самцов, а на дефектных никак не сказывается. Вывод: дефектные не обладают магниточувствительностью.

Казалось бы, это доказывает неопровержимость радикальной гипотезы, и она оказывается прекрасной теорией, неплохо вписывающейся в экспериментальные данные. Однако есть серьезные возражения. Самое главное – предполагаемый механизм спиновой химии для слабого магнитного поля Земли до сих пор не продемонстрирован, его работоспособность зафиксирована для гораздо больших напряженностей магнитного поля.

Усложняют картину и животные, выпадающие из необходимых теоретикам закономерностей. Скажем, восточноамериканский краснопятнистый тритон обладает магниторецепцией не в одном, а в двух световых диапазонах – сине-ультрафиолетовом и близком к инфракрасному. Чтобы вписать его в концепцию, приходится придумывать весьма замысловатые превращения все того же криптохрома.