Системоведение: Теория. Методология. Практика. | страница 50



С методологической точки зрения существенно, что применение распределений к описанию сложных многозначных процессов обеспечивает получение новых видов обобщенного знания. Методы статистического обобщения разрабатываются в рамках теорий оценки и теории испытания статистических гипотез.

Теория оценки позволяет определить показатели генеральной совокупности, к которой вероятно принадлежат параметры изучаемой совокупности, рассматриваемой как частичная выборка. Причем либо устанавливают конкретное значение параметра, что называется оценкой точки, либо оценивают интервал, в котором, как мы полагаем, заключены параметры совокупности. Это называется оценкой интервала. В настоящее время разработаны различные критерии статистических оценок [6].

Испытание гипотез связано с исследованием вопроса: принадлежит ли данная выборка некой совокупности, параметры которой определяются гипотезой. Здесь устанавливается, случайны ли отклонения между показателем выборки и параметром генеральной совокупности. Методы проверки статистических гипотез включают средства определения устойчивости массового явления. Существенно, что устойчивость выявляется здесь не в непосредственном исследовании значений некоторого признака, а на основе принципа фальсифицируемости случайной величины, характеризующей этот признак.

Поскольку интересующий исследователя признак берется в форме случайной величины, постольку в эмпирической проверке допустимы случайные колебания в его значениях. Статистический подход позволяет определить достоверность случайного характера этих колебаний. Косвенным средством подтверждения устойчивости исходной формы случайной величины служит нефальсифицируемость соответствующей гипотезы.

Статистическая гипотеза имеет черты, свойственные любой научной гипотезе. Она возникает в итоге наблюдения за фактами. Однако способ ее выражения имеет характер теоретического допущения. В этом качестве гипотеза способна выводить знания за пределы конечных эмпирических фактов.

Смысл ее выдвижения заключается в том, чтобы доказать применимость обобщенной модели для описания наблюдаемого статистического материала. Эта модель может изучаться дедуктивными математическими приемами. Такие приемы выработаны математической статистикой на основе теории стохастических процессов и законов, управляющих случаем.

Уточняя логические возможности средств статистического обобщения, надо признать, что они основаны на идентификации подмножеств различной конфигурации по их функциональным характеристикам. Это обстоятельство обеспечивает применение статистического аппарата для выражения структурно-функциональных признаков сложных систем в ситуациях, когда иные методы для этой цели оказываются малопригодными.