Дядюшка Петрос и проблема Гольдбаха | страница 54



– И что?

– И то, мой мальчик, что если доказательство существует, то кому-то суждено его найти!

Это рассуждение до меня не дошло.

– Я не вижу, чем это тебя утешило, дядя Петрос. Из того факта, что доказательство существует, никак не следует, что именно тебе суждено его найти.

Он поглядел на меня так, словно я не заметил очевидного:

– А кто во всем мире был лучше подготовлен для этого, чем я, Петрос Папахристос?

Вопрос был явно риторический, и потому я не потрудился на него ответить. Но был озадачен. Тот Петрос Папахристос, о котором он говорил, был совсем не тем застенчивым и отстраненным пожилым садоводом, которого я знал с детства.


Конечно, потребовалось время, чтобы оправиться после письма Харди и сокрушительных новостей. Но дядя в конце концов оправился. Он собрался с духом, наполнил свои резервуары надежды верой в то, что «доказательство где-то существует», и возобновил поиск, но был уже немного другим человеком. Его неудачное приключение, обнажив в маниакальном стремлении элемент тщеславия, создало у него внутреннее ядро покоя, ощущение того, что жизнь продолжается независимо от проблемы Гольдбаха. Режим его работы стал слегка менее напряженным, и его уму помогали шахматные интерлюдии; разум стал более спокоен, несмотря на постоянную работу мысли.

Кроме того, переход к алгебраическому методу (он уже решил это в Инсбруке) принес ему ощущение радости от начатой заново работы, опьянение от входа в неисследованные земли.

После статьи Римана в середине девятнадцатого века в течение ста лет в теории чисел доминировала аналитическая тенденция. Возвращаясь теперь к древнему элементарному подходу, мой дядя шел в авангарде стратегического отступления, если мне будет позволен такой оксюморон. История математики запомнит его хотя бы за это, если больше будет не за что.

Здесь следует подчеркнуть, что в контексте теории чисел слово «элементарно» ни в коем случае не может считаться синонимом слова «просто» и уж тем более «легко». Методы элементарного подхода – это методы, которыми получены величайшие результаты Диофанта, Евклида, Ферма, Гаусса и Эйлера, и элементарны они лишь в том смысле, что выведены из элементов математики, основных арифметических операций и методов классической алгебры действительных чисел. Несмотря на эффективность аналитического подхода, элементарные методы стоят ближе к фундаментальным свойствам целых чисел, и полученные с их помощью результаты для математика интуитивно яснее и глубже.