Дядюшка Петрос и проблема Гольдбаха | страница 38
Прошло несколько десятилетий, и Адамар и Балле-Пуссен смогли доказать асимптотическую формулу Гаусса с помощью дзета-функции Римана (с тех пор этот результат известен как «Закон распределения простых чисел»). Аналитический подход вдруг сделался волшебным ключом к самым глубоким тайнам теории чисел.
Когда Петрос начал работу над проблемой Гольдбаха, аналитический подход был на пике возлагаемых на него надежд.
Потратив несколько первых месяцев на ознакомление с масштабами проблемы, Петрос решил, что будет действовать с помощью теории разложений (различных способов представления целого числа в виде суммы) – еще одного приложения аналитического метода. Помимо центральной для этого круга вопросов теоремы, доказанной Харди и Рамануджаном, существовала также гипотеза Рамануджана (одно из его знаменитых «предчувствий»), которую Петрос надеялся использовать как решающую ступень на подходе к проблеме Гольдбаха – если только ему удастся эту гипотезу доказать.
Он написал Литлвуду, спросив его как можно более осторожно, были ли какие-либо работы в этой области за последнее время, и постарался, чтобы вопрос выглядел простым «интересом коллеги». Литлвуд ответил отрицательно, прислав при ответе новую книгу Харди «Некоторые знаменитые проблемы теории чисел». В ней содержалось своего рода доказательство утверждения, которое называется «второй», или «другой», проблемой Гольдбаха [16]. Это так называемое доказательство имело фундаментальную лакуну: оно опиралось на гипотезу Римана – не доказанную. Петрос прочел его и покровительственно улыбнулся. Да, Харди дошел до отчаяния, если публикует результаты, основанные на недоказанных предположениях! Основная же проблема Гольдбаха, Проблема с большой буквы, не удостоилась даже упоминания. Петросу ничего не грозило.
Он вел свою работу в полной тайне, и чем глубже исследования уводили его в глубь