Дядюшка Петрос и проблема Гольдбаха | страница 36
Предложение занять кафедру анализа в Мюнхенском университете пришло чуть раньше и оказалось очень вовремя. Эта должность была бы идеальной. Ранг профессора – косвенная награда за полезность метода Папахристоса для армии кайзера – даст Петросу свободу от излишней преподавательской нагрузки и обеспечит финансовую независимость от отца, чтобы у того не было искушения вернуть сына в Грецию и заставить заниматься семейным предприятием. В Мюнхене он будет избавлен от посторонних обязанностей. Несколько лекционных часов – не слишком большая потеря времени, напротив, живая связь с техникой анализа, которую он будет применять в своей работе.
Меньше всего Петросу хотелось, чтобы другие лезли в его задачу. Оставляя Кембридж, он намеренно скрыл свои следы дымовой завесой. Он не только не сказал Харди и Литлвуду, что отныне будет работать над проблемой Гольдбаха, но создал у них впечатление, что будет продолжать заниматься их любимой гипотезой Римана. И в этом отношении Мюнхен тоже был идеален: его математический факультет не был особенно прославленным, как Берлинский или почти легендарный Геттингенский, и потому Петрос будет изолирован от главных центров математических сплетен и назойливого любопытства.
Летом 1919 года Петрос въехал в темную квартиру на втором этаже (он считал, что излишек света несовместим с абсолютной сосредоточенностью) неподалеку он университета. Он познакомился с новыми коллегами и обговорил программу преподавания со своими ассистентами, которые почти все были старше его. Потом он организовал у себя дома рабочую обстановку, в которой отвлекающие моменты были сведены к минимуму. Его домоправительнице, еврейской даме средних лет, овдовевшей в последнюю войну, было абсолютно недвусмысленно сказано, что когда Петрос находится в кабинете, тревожить его нельзя ни под каким видом.
Прошло уже больше сорока лет, но мой дядя с исключительной ясностью помнит тот первый день, когда он начал работу.
Солнце еще не взошло, когда он уже сел за стол, взял толстую авторучку и написал на чистом белом листе бумаги:
УТВЕРЖДЕНИЕ. Любое четное число, большее 2, может быть представлено в виде суммы двух простых.
ДОКАЗАТЕЛЬСТВО. Допустим, что данное утверждение ложно. Тогда существует целое числоn, такое, что 2nне может быть выражено в виде суммы двух простых чисел, т. е. для любого простого числаp‹ 2nчисло 2n–pявляется составным…
После нескольких месяцев напряженной работы он начал оценивать истинные размеры проблемы и отметил наиболее очевидные тупики. Он уже мог очертить общую стратегию своего подхода и сформулировать некоторые промежуточные результаты, которые необходимо было доказать. Следуя военной терминологии, он называл их «господствующими высотами, которые надо занять перед решительной атакой на саму Проблему».