Что за безумное стремленье! | страница 82
В этот период теоретики усиленно бились над попытками разрешить проблему кода – в первую очередь Гамов, Ичас и Рич. Гамов и Ичас выдвинули идею «комбинаторного кода», где порядок оснований в триплете не имел значения, а важна была только их комбинация. Хотя эта гипотеза была неправдоподобна со структурной точки зрения, в ней что-то было, поскольку возможных комбинаций из четырех элементов, взятых по три, получается как раз двадцать. Но по-прежнему оставалось совершенно неясным, как соотнести каждую аминокислоту с комбинацией оснований.
Ученые всё еще думали, что код должен быть перекрывающимся, поэтому поиск ограничений на аминокислотную последовательность продолжался. По мере того как открывали новые последовательности, их добавляли к уже известным, но не находилось ни малейших признаков того, что какие-либо последовательности запрещены, пусть поначалу данные и были чересчур скудными, чтобы мы могли быть уверены в том, что ничего не упустили. Внимание было сосредоточено в основном на соседних аминокислотах. Комбинаций из двух аминокислот возможно общим счетом 400 (20х20). Любая перекрывающаяся тройка могла бы кодировать лишь 256 (64 возможных тройки, помноженных на 4), так что код подобного рода должен был иметь ограничения. Сидни Бреннер сообразил, что этот довод можно усилить. С любым триплетом могли соседствовать по одну сторону лишь четыре других триплета. Например, если речь идет о триплете AAT, то предшествовать ему могли только TAA, ЦAA, AAA и ГAA, тогда как следовать после него – только ATT, ATЦ, ATA и ATГ, если принять, что код перекрывается. Следовательно, если в известных последовательностях у определенной аминокислоты окажется девять и более «соседей», следующих после нее, значит, ее кодирует не менее трех триплетов, поскольку два триплета дают лишь восемь. Сидни сумел показать, что необходимое количество триплетов существенно превышает 64 и что, следовательно, все перекрывающиеся варианты триплетного кода невозможны. Это рассуждение исходило из посылки, что код «универсален» – то есть одинаков для всех организмов, для которых получены экспериментальные данные, – но оно было достаточно убедительно, чтобы мы практически уверились в ошибочности идеи перекрывающегося кода.
Это не отменяло геометрического затруднения. Как могла в процессе синтеза белков одна аминокислота оказаться достаточно близко к другой для соединения в цепочку, если кодирующие их триплеты не перекрывались и, следовательно, были разделены некоторым расстоянием? Сидни предположил, что у постулируемых адапторов имеется гибкий хвостик, к концу которого присоединяется нужная аминокислота. В ту пору мы с Сидни не рассматривали эту идею слишком серьезно и называли ее «авось-теорией», подразумевая, что можно представить себе по крайней мере один способ, которым природа могла бы разрешить эту проблему, так что незачем на данном этапе переживать, каков в действительности правильный ответ, тем более что перед нами стояли более важные задачи. В данном случае, как оказалось, Сидни был прав. У каждой транспортной РНК в самом деле есть гибкий хвостик, к которому присоединяется аминокислота.