Что за безумное стремленье! | страница 61
Примерно в это же время на сцену вышел Билл Поул, чистый математик. Он указал – вполне справедливо – что при прочих равных условиях самым вероятным результатом репликации кольцевой ДНК будут два сцепленных дочерних кольца, а не два отдельных. Из этого он заключил, что цепочки ДНК не могут перевиваться, как предполагали мы, но должны лежать параллельно.
Какое-то время я вел с ним переписку и телефонные разговоры. Потом он нанес мне визит. Он был уже хорошо знаком с подробностями экспериментов и упорно настаивал на своей точке зрения. Я писал ему, что если природа случайно произведет два сцепленных кольца, то в ходе эволюции должен возникнуть механизм, который их расцепляет. Думаю, он счел это возмутительным образчиком логической ошибки, и его это вовсе не убедило. Впоследствии, несколько лет спустя, оказалось, что именно так и происходит в реальности. Ник Коццарелли[28] и его коллеги продемонстрировали, что специальный фермент – топоизомераза II – способен разрезать обе нити участка ДНК, пропустить другой участок ДНК между концами и затем снова сшить разрезанные концы. Таким образом он может расцепить два сцепленных кольца ДНК и даже может, при достаточно высоких концентрациях ДНК, сцепить исходно раздельные кольца.
К счастью, блестящие исследования Уолтера Келлера и Джима Вонга по «коэффициенту зацеплений» ДНК доказали, что все параллельные модели неверны. Они продемонстрировали, что две цепочки кольцевой ДНК перевиты друг с другом примерно столько раз, сколько предсказывала наша модель. Я потратил столько времени на эту проблему, что в 1979 г. совместно с Джимом Вонгом и Биллом Бауэром написал обзорную статью «Действительно ли ДНК – двойная спираль?» (Is DNA Really a Double Helix?), где мы рассмотрели подробно все доводы.
Сомневаюсь, что даже это само по себе убедило бы закоренелого скептика, но как раз в это время Билл Поул выбросил белый флаг. К счастью, наука не стояла на месте. Выдвинуть решающие доводы на основании рентгенограмм прежде мешало отчасти то, что картинка не давала достаточно информации, как и то, что приходилось постулировать условную модель и затем сопоставлять ее со скудными данными.
К концу семидесятых химики открыли эффективный способ синтезировать достаточное количество коротких цепочек ДНК с любой нужной последовательностью оснований. При достаточном везении такую короткую цепочку можно было кристаллизовать. Затем ее структуру можно было определить с помощью рентгеновской дифракции, используя достоверные методы, такие как метод изоморфных замещений, который не нуждался в заранее заданных ожиданиях результата. Кроме того, пятна рентгеновской дифракции на таких кристаллах давали более высокое разрешение, чем старые рентгенограммы нитей, в том числе потому, что нити получали из ДНК с перемешанными последовательностями. Неудивительно, что нити давали менее четкий рисунок молекулы, поскольку рентгенограмма отражает