Что за безумное стремленье! | страница 120



В июне 1966 г. состоялась ежегодная конференция в Колд Спринг Харбор, на этот раз посвященная генетическому коду. Она ознаменовала конец классической молекулярной биологии, поскольку точная расшифровка генетического кода – маленький словарик – продемонстрировала, что в общих чертах основные идеи молекулярной биологии верны. Меня и многих других – как коллег, так и стороннюю публику – поражало, насколько быстро мы этого достигли. Приступая к биологическим исследованиям в 1947 г., я и не подозревал, что все главнейшие вопросы, которые меня волновали, – из чего состоит ген, как он воспроизводится, как он включается и выключается, как работает – получат ответы еще при моей научной жизни. Я выбрал тему или комплекс тем, которые, как мне представлялось, переживут мою пору активной научной деятельности, а теперь оказалось, что мои амбиции по большей части утолены.

Безусловно, не все вопросы получили полные ответы. Мы всё еще не знали последовательности оснований ни одного конкретного гена. Наши представления о биохимии репликации генов были вульгаризацией. Механизмы управления генами были изучены только у бактерий, и даже в этом случае молекулярные тонкости оставались неизвестными. О регуляции генов у высших организмов мы не знали, можно сказать, ничего. И хотя мы выяснили, что матричная РНК управляет синтезом белков, сама рибосома, на которой синтезируются белки, фактически оставалась для нас черным ящиком. И все же к 1966 г. мы поняли, что основания молекулярной биологии теперь утвердились достаточно прочно, чтобы использовать их как вполне надежную базу для долгосрочной задачи прояснения множества деталей.

Мы с Сидни Бреннером решили, что настало время переключиться на новые области. Мы выбрали эмбриологию, которую теперь часто называют более общим термином «биология развития». После долгого чтения и размышления Сидни выбрал маленького червячка-нематоду Caenorhabditus elegans в качестве модельного организма, потому что он быстро размножается, его легко разводить в лаборатории, и у него нетипичная, но интересная наследственность. (Он – самооплодотворяющийся гермафродит.) Почти все исследования в настоящее время, которые проводятся на этом животном – его используют даже в изучении старения, – выросли из тех новаторских работ Сидни.

Я решил, что ключевую роль в развитии играют градиенты, что бы они из себя не представляли. Каким-то образом клетка эпителия (клеточного слоя) словно бы знала, в каком месте слоя она находится. Это объясняли существованием «градиентов» в той или иной форме – вероятно, закономерных изменений концентрации какого-то вещества от одной части слоя к другой. Природа этих постулируемых градиентов была тогда неясна. Примерно на этом этапе к нам присоединился Питер Лоуренс, и я основательно опирался на его работу по градиентам в кутикуле насекомых, исследования которых впервые начал Майкл Локк. Мои коллеги Майкл Уилкокс и Грэм Митчисон занимались еще более примитивной системой – расположением клеток в длинных цепочках, образуемых клетками сине-зеленых водорослей (теперь их называют бактериями). Несмотря на все затраченные усилия, они не сумели даже подступиться к биохимическим основам проблемы – из каких молекул состоит тот или иной градиент, – и в конце концов я переключился на другие аспекты темы. Я заинтересовался гистонами, небольшими белковыми молекулами, сопровождающими ДНК в хромосомах высших организмов, и стал внимательно присматриваться к исследованиям моих коллег Роджера Корнберга, Аарона Клуга и других, которые впоследствии определили структуру нуклеосом – маленьких телец, на которые наматывается хромосомная ДНК.