Исследование психологии процесса изобретения в области математики | страница 31
Каждый автор может, вероятно, рассказать об аналогичных своих неудачах. Что касается меня, то я несколько раз не видел результатов, из-за, должно быть, какого-то ослепления, так как они были непосредственными следствиями результатов, которые я получил. Причина большинства таких промахов всё та же, а именно, слишком концентрированное внимание.
Первый случай, который я вспоминаю из своей жизни, касался формулы, которую я получил в самом начале моей исследовательской работы; я решил её не публиковать и добиться вывода из неё важных следствий. В это время все мои мысли, как и мысли многих аналитиков, были прикованы к единственному вопросу: доказательству знаменитой «теоремы Пикара». Полученная мною формула давала совершенно очевидно один из результатов, который я открыл четырьмя годами позднее гораздо более сложным путём; и я не отдавал себе в этом отчёта, пока через много лет Иенсен не опубликовал эту формулу и не отметил, как её непосредственное следствие, результаты, которые я, к счастью для моего самолюбия, уже получил в этот промежуток времени. Ясно, что в 1888 г. я думал исключительно о теореме Пикара.
Следующая моя работа была моей диссертацией. Две теоремы, важные для темы[47], были такими очевидными и непосредственными следствиями идей, содержавшихся в работе, что позднее другие авторы мне их приписывали, и я был вынужден признаваться, что как бы очевидны они ни были, я их не видел.
Несколькими годами позднее я занимался обобщением на гиперповерхности классического понятия кривизны поверхности. Мне нужно было определить понятие кривизны поверхности в гиперпространствах Римана, — обобщение более элементарного понятия кривизны поверхности в обычном пространстве. Мне хотелось получить эту кривизну Римана как кривизну некоторой поверхности S, проведённой в рассматриваемом гиперпространстве, причём форма этой поверхности выбрана таким образом, чтобы кривизна оказалась минимальной. Я сумел показать, что полученный таким образом минимум был в точности выражением Римана; но, думая над этим вопросом, я не обратил внимания на обстоятельства, при которых достигается этот минимум, т. е. на то, как для достижения этого минимума построить S. Изучение этого вопроса привело бы меня к принципу «абсолютного дифференциального исчисления», открытие которого принадлежит Риччи и Леви-Чивиту.
Абсолютное дифференциальное исчисление находится в тесной связи с теорией относительности; и по этому поводу я должен признаться, что, увидев, что уравнение распространения света инвариантно относительно некоторой группы преобразований (известных теперь под названием преобразований Лоренца), в которую входят пространство и время, я прибавил, что «такие преобразования явно лишены физического смысла». А эти преобразования, которые я счёл лишёнными физического смысла, составляют основу теории Эйнштейна!