Пути в незнаемое | страница 27
Откуда возьмется водород? Пока что мы обходили этот вопрос, но ведь действительно: нельзя же его добывать так, как сейчас, — сжигая природный газ или разлагая воду электрическим током. И тот и другой способы крайне невыгодны для крупномасштабного производства водорода. К счастью, есть более рациональные способы. Один из них — разложение воды с помощью катализаторов, веществ очень доступных: угля и окиси железа. Трудность, правда, в том, что реакция идет при температурах от двухсот пятидесяти до тысячи четырехсот градусов, в зависимости от стадии (она многостадийна). Но мы уже знаем, что сжигать топливо не станем: тепло должна дать атомная энергия, к которой мы наконец подобрались вплотную. Речь идет о высокотемпературных ядерных реакторах.
В обычных атомных установках тепло из активной зоны реактора переносит вода, порой — легкоплавкий металл. Температуру таких теплоносителей выше пятисот градусов не поднимают, нельзя. А в высокотемпературных системах вместо этих веществ циркулирует гелий. Значит, есть возможность и теоретически и практически поднять температуру теплоносителя до тысячи, а иногда даже до тысячи двухсот градусов. Высокотемпературные реакторы поднимают тепловой КПД атомной станции до пятидесяти процентов — величины, абсолютно недостижимой для обычных АЭС и ТЭС.
Но это только начало. Суть дела в том, что высокотемпературные реакторы и работающие на их основе атомные электростанции превратятся в центры, вокруг которых станут группироваться энергоемкие производства, требующие и электричества и тепла. Именно здесь целесообразно разместить заводы, синтезирующие из угля жидкие и газообразные углеводороды, разлагающие воду на водород и кислород с помощью угля. Здесь встретится с атомной энергией плазменная технология.
Реактор нагреет теплоноситель до температуры, близкой к тысяче градусов, а остальные градусы, нужные, чтобы пошло разложение воды, даст плазмотрон, — например, радиочастотный. А уж выработанным водородом мы градусах при восьмистах получим из руды чистейшее железо, без всяких примесей вроде фосфора, обычно попадающего в металл из кокса. Никель, кобальт, вольфрам, молибден — множество тугоплавких и крайне нужных поэтому металлов будут выходить из водородной плазмы в виде порошка. А порошок!.. Из порошка (который сейчас получают по сложной и крайне энергоемкой, многоступенчатой технологии — а потому получают мало), как известно, не составляет труда сделать самую сложную деталь совершенно без отходов, просто спекая порошок в печи. То есть с приходом водорода иным становится и машиностроение!