Мозг: прошлое и будущее | страница 25
Сложность нейронных вычислений доходит до понятий из вузовской математики. Нейронные сети «знают» математический анализ, основу основ программы первого курса, и применяют его, когда надо отследить, как что-то в мире меняется или накапливается со временем. Когда глядишь на что-то определенное, двигая головой или телом, то задействуешь «нейронный матанализ», чтобы отслеживать прогресс собственных движений, и на основании этих данных корректируешь направление взгляда, чтобы оно не менялось при движении. Ученые выявили в мозге золотой рыбки группу из 30–40 нейронов, видимо, предназначенную для таких расчетов[76]. Другая разновидность нейронного матанализа позволяет зрению мухи распознавать движущиеся предметы. Для этого маленькие группы нейронов на сетчатке мухи сравнивают сигналы из соседних точек пространства[77]. Эти маленькие нейронные сети сигнализируют о движении, если визуальный сигнал из одной точки прибывает раньше, чем сигнал из второй точки, – примерно как мы с вами делаем вывод о движении поезда метро, сопоставляя время прибытия на соседние станции, даже если не наблюдаем движущийся поезд непосредственно.
Нейрофизиологи рассказывают и о сетях, решающих гораздо более сложные задачи, чем математический анализ: они обеспечивают распознавание предметов, принятие решений и сознание как таковое. И хотя ученые еще не сумели выявить нейронные сети, которые совершают эти операции, им удалось зарегистрировать у нейронов признаки подобных сложных расчетов. Для этого частота потенциалов действия нейронов сравнивалась с решением поведенческих задач на выходе. В пример можно привести классический цикл экспериментов по изучению нейронных механизмов обучения, которые провел Вольфрам Шульц из Кембриджского университета на основании данных, полученных из мозга обезьян при помощи электродов. Группа под руководством Шульца изучала, как обезьяны учатся связывать конкретный визуальный стимул с последующей наградой (им давали фруктовый сок), – похожий эксперимент проводил Павлов со своими собаками[78]. У обезьян возникали потенциалы активности у дофамин-содержащих нейронов в отделе мозга, который называется «вентральная область покрышки», и поначалу это происходило, когда обезьяны получали сок. Но после того, как обезьяны несколько раз видели визуальный стимул и получали сок, дофаминовые нейроны начали «выстреливать» при появлении стимула – то есть еще до сока. Это показывает, что нейроны научились «предсказывать» награду, следовавшую за каждым стимулом. Примечательно, что поведение дофаминовых нейронов в этой задаче очень похоже на вычислительный алгоритм из области машинного обучения