Искусственный интеллект на службе бизнеса | страница 21
Глава 2. Почему это называется «интеллект»
В 1956 году группа учеников Дартмутского колледжа в Нью-Гемпшире планировала исследование с целью создания ИИ. Их интересовало, можно ли запрограммировать компьютер на познавательный процесс, чтобы он учился, скажем, играть, доказывать математические теоремы и прочее. Также они предусмотрели язык и соответствующие данные, с тем чтобы компьютер мог описывать вещи. Они хотели, чтобы компьютер выбирал лучший из предложенных вариантов. Исследователи видели возможности ИИ в самом радужном свете. В обращении за финансированием к Фонду Рокфеллера они написали:
«Мы намерены выяснить, как научить компьютер использовать язык, оперировать абстрактными понятиями, решать разные типы задач, которые сейчас решают люди, и самосовершенствоваться. Полагаем, что за лето при условии сплоченной работы коллектива ученых мы заметно продвинемся в направлении одной из этих целей»[26].
Но эти планы по большей части остались в мечтах. Помимо прочего, в 1950-х компьютеры были недостаточно мощными и быстродействующими для воплощения в жизнь всех замыслов студентов.
После этого заявления ИИ показал некоторый прогресс в языковых переводах, но незначительный. Разработки ИИ для узкоспециализированной среды (например, создания программы-психотерапевта) были неприменимы в других случаях. В начале 1980-х появилась надежда на создание экспертных систем для замены квалифицированных специалистов, в том числе для постановки медицинских диагнозов, но проекты оказались дорогостоящими, громоздкими и не могли учитывать миллиарды исключений и вариантов, что привело к периоду, называемому «зимой ИИ».
Но, похоже, зима закончилась. Сейчас данных больше, модели лучше, компьютеры мощнее, поэтому недавние разработки в сфере машинного обучения привели к повышению качества прогнозов. Усовершенствования в сборе и хранении большого объема данных обеспечили основу для новых алгоритмов машинного обучения. По сравнению со своими предшественниками современные компьютеры оборудованы более мощными процессорами, а новые модели машинного обучения гибче и выдают более точные прогнозы – настолько, что эту отрасль IT снова стали называть «искусственным интеллектом».
Прогнозирование оттока клиентов
В основе развития прогностики лежат улучшенные данные, модели и компьютеры. Для понимания их ценности давайте рассмотрим давнюю проблему прогнозирования «оттока клиентов», как выражаются маркетологи. Большинству компаний привлечение клиентов обходится дорого, и, следовательно, их отток приносит убытки. С набранной клиентской базой компания экономит на этих расходах, снижая отток. Сложнее всего его контролировать в сферах профессиональных услуг: страховании, финансовых операциях и телекоммуникации. Первый шаг к снижению оттока – выявление ненадежных клиентов, для чего компании могут использовать прогностические технологии.