Популярная аэрономия | страница 68
Нужно ли, учитывая все это, удивляться, что в области D мы далеки от того положения с исследованием ионного состава, которое имеется в других ионосферных областях.
Итак, сложность получения экспериментальной информации о строении и составе ионосферы ниже 100 км очевидна. Несмотря на это, естественно, делаются все новые и новые попытки изучать D-область различными методами. Используют радиоволны, излученные с ракеты, модифицируют идею поглощения радиоволн, усовершенствуют зондовую методику, применяют методы, основанные на тонких эффектах распространения радиоволн, таких, как перекрестная модуляция, частичное отражение, взаимодействие с ионосферной плазмой сверхдлинных радиоволн и т. д. И нет недостатка в профилях, скажем, электронной концентрации, измеренных в разных местах различными приборами в разных условиях. Но беда состоит в том, что, получая в разных измерениях сильно отличающиеся результаты, мы каждый раз должны решать, является ли это отражением реальной изменчивости самой D-области или результатом ошибочности одного из примененных методов.
Ищем источник ионизации
"Одинокой области D нужен приличный источник ионизации для воздействия в дневное время. Обращаться по адресу: Земля, ионосфера, высота 65 - 85 км". Так, вероятно, должна выглядеть проблема, если перевести ее на язык доски объявлений.
Ну а если говорить серьезно, то поиски источника ионизации в D-области доставили исследователям немало хлопот.
Мы уже знаем, что солнечное ультрафиолетовое излучение с λ<1000 Å не проникает в атмосферу ниже 120 - 140 км. Оно является главной причиной существования основной части ионосферы. Его ближайший помощник - рентген с длиной волны 10 - 100 Å - ионизует нейтральные частицы на высотах 90 - 120 км, обеспечивая тем самым существование области Е. Но и он не может пробиться сквозь толщу нейтральных частиц на меньшие высоты.
Остается еще более коротковолное излучение с λ<10 Å. Кванты этого излучения благодаря своей высокой энергии способны пробиться несколько глубже в толщу атмосферы и вызвать ионизацию на 80 - 90 км. Но и в этом случае интенсивность очень резко падает с уменьшением высоты из-за сильного поглощения. Скорость ионизации, которую может обеспечить рентген, составляет на высоте 80 км 0,004%, или 4×10-5 скорости ионизации на высоте 100 км, а на 70 км эта величина уменьшается до 10-7. Реально оказывается, что эта скорость ионизации способна обеспечить лишь образование самой верхней части области D, лежащей выше 85 км. Очевидно, если бы за ионизацию D-области отвечал только рентген, то эта глава просто не понадобилась бы, так как не было бы ни проблем, ни загадок, ни самой D-области. Но она есть, со всеми своими проблемами. Значит, есть и другие источники, ее питающие, помимо рентгена. Один из таких источников - галактические космические лучи. Последние суть ядра тяжелых элементов прилетающие из просторов галактики и вторгающиеся в атмосферу. Энергия этих частиц столь велика, что они свободно достигают поверхности Земли или, во всяком случае, низколежащих плотных слоев. Ни о каком поглощении космических лучей на ионосферных высотах, которые интересуют нас, нет и речи.