Популярная аэрономия | страница 61



Ясен уже и механизм этой подкачки. Ее осуществляют потоки плазмы (ионов и электронов) из более высоких областей.

Оказалось, что ионосфера находится в своеобразных отношениях взаимообмена с расположенной выше плазмосферой. Днем, когда на ионосферных высотах интенсивно идет фотоионизация, ионосфера может себе позволить поделиться частью образующейся плазмы и та устремляется вверх, образуя поток ионов и электронов. Ночью, когда фотоионизации нет, рекомбинация (которая активна в ионосфере, но практически отсутствует в плазмосфере) начинает быстро уничтожать заряженные частицы в области F2. И здесь плазмосфера возвращает свой долг, посылая потоки плазмы вниз в ионосферу, чтобы поддержать истощенный рекомбинацией профиль электронной концентрации. Таким образом, потоки частиц из плазмосферы (их величина составляет 107-108см-2×с-1) вместе с системой нейтральных ветров объясняют обе особенности ночной области F2 - сохранение достаточно высоких концентраций электронов и подъем максимума слоя.

Вторая особенность области F2 - так называемая зимняя аномалия (не путать с зимней аномалией поглощения радиоволн в области D). Она состоит в том, что дневная электронная концентрация в максимуме слоя F2 зимой выше, чем летом. На первый взгляд, это явно противоречит здравому смыслу. Ведь летом больше время облучения атмосферы солнечным излучением, вызывающим ионизацию, значит, должна бы быть больше (а уж никак не меньше!) и концентрация заряженных частиц. Такое поведение [е] в области F2 выглядело настолько странным, что его назвали летне-зимней аномалией. Так сказать, явное отклонение от кажущегося здравого смысла. Известно при этом, что высота максимума слоя F2 зимой меньше (на 20 - 30 км), чем летом.

С самого начала исследований зимней аномалии в области F2 ее пытаются связать с изменением отношения атомных и молекулярных компонент [О]/[N2]. Наиболее простое объяснение состоит в том, что зимой (когда освещенность Солнцем меньше) температуры атмосферы ниже и, следовательно, по законам диффузионного разделения, выше отношение [О]/[N2]. А электронная концентрация, как мы уже говорили, пропорциональна этому отношению.

Выяснилось, что есть еще один фактор, который изменяет равновесную концентрацию электронов при изменении температуры в нужную нам сторону. Этот фактор - константа γ ионно-молекулярной реакции O+ + N2, которая в значительной мере определяет величину коэффициента β. При уменьшении Tн от лета к зиме будет уменьшаться величина γ, а значит, и β, что приведет к росту равновесной концентрации электронов зимой по сравнению с летом при тех же величинах g.