Популярная аэрономия | страница 49



При переходе от дня к ночи также два фактора влияют на изменение α'. С одной стороны, растет доля ионов NO+, с другой - падает электронная температура. В результате на высотах 100-200 км ночью эффективный коэффицкент рекомбинации в 2 - 3 раза выше, чем днем.

Хотя в этой главе мы специально ограничиваемся высотами 100 - 200 км, в данном случае, говоря об эффективном коэффициенте рекомбинации, нам придется захватить большие высоты, чтобы рассмотреть вопрос о так называемых двух законах рекомбинации.

Дело в том, что уже на заре ионосферных исследований обнаружили странный факт. В области Е гибель электронов происходит пропорционально [е]2 (тогда в равновесных условиях q∞[e]2), а в области F2 - пропорционально [е] (соответственно q∞[e]).

Говорят, что в первом случае имеет место квадратичный закон рекомбинации

Формула 25

где α' как раз и есть эффективный коэффициент рекомбинации, о котором мы говорили выше. В данном случае он не должен зависеть от [е].

Второй случай представляет собой линейный закон рекомбинации

Формула 26

Чтобы перейти к нему от предыдущей формулы, надо предположить, что α' сам зависит от

Закон рекомбинации

где β - линейный коэффициент рекомбинации, который уже от [е] не зависит.

Фотохимическая теория полностью объясняет наблюдаемое изменение закона рекомбинации в ионосфере с высотой. Впервые это объяснение дал английский ученый Ратклифф, исходя из концепции двух типов процессов: ионно-молекулярных реакций и диссоциативной рекомбинации. Он показал, что на малых высотах, где велика плотность нейтральных частиц и доля молекулярных ионов, гибель электронов определяется именно диссоциативной рекомбинацией, и величина α' просто равна константе диссоциативной рекомбинации α* (или средневзвешенному значению, если есть несколько ионов с разными αi*).

Когда количество нейтральных частиц становится мало и мала доля молекулярных ионов (как это имеет место в области F2), ионно-молекулярные реакции оказываются тем узким местом, которое тормозит рекомбинационный процесс и тем самым определяет величину коэффициента рекомбинации. В этом случае β будет равен γ[M] и в условиях фотохимического равновесия

Формула 27

Следует подчеркнуть, что мы говорим здесь об условиях фотохимического равновесия в области F2 и о выражении q = β[e] лишь, следуя Ратклиффу, в целях наглядности. На самом деле в уравнении баланса заряженных частиц в области F2 и выше всегда должен присутствовать член, описывающий динамику переноса этих частиц. Но это уже тема другого параграфа...