Стрела времени | страница 43



Мы прибыли вовремя. После того как наш почетный гость был представлен профессору Симпсону и другим членам общества, мы сели за стол. Я обратил внимание

Сляпенарского на традицию оживлять наши банкеты мелкими деталями, выдержанными в «топологическом духе».

Например, серебряные кольца для салфеток были выполнены в форме «листов Мёбиуса». К кофе подавали специально испеченные бублики, а кофейник был изготовлен в виде «бутылки Клейна2».

После обеда за десертом нам подали эль от Баллантайна и крендельки, испеченные в форме двух разновидностей тройного узла, переходящих друг в друга при зер-


2 Бутылка Клейна — это определённая неориентируемая поверхность (то есть двумерное многообразие). Бутылка Клейна впервые была описана в 1882 г. немецким математиком Ф. Клейном. Чтобы построить модель бутылки Клейна, понадобится бутылка с двумя дополнительными отверстиями: в донышке и в стенке. Горлышко бутылки нужно вытянуть, изогнуть вниз, и продев его через отверстие в стенке, присоединить к отверстию на дне бутылки.

кальном отражении (выбор устроителей банкета пал на эль из-за торговой марки этого напитка: трех сцепленных колец, распадающихся, если убрать какое-либо из них).

Сляпенарского позабавили эти топологические безделушки, и он высказал немало предложений на будущее, слишком сложных, чтоб объяснять их здесь.

После моего краткого вступительного слова Сляпенарский встал, поблагодарил присутствующих улыбкой за аплодисменты и откашлялся. В столовой мгновенно наступила тишина. Читатель уже представляет наружность профессора – его внушительную фигуру, рыжеватую бороду и сверкающую голову без единого волоска. В выражении лица Сляпенарского была какая-то особая многозначительность, показывающая, что нам предстоит узнать из его лекции нечто весьма важное, пока известное лишь ему одному.

Изложить сколь-нибудь подробно блестящий, но доступный пониманию только специалистов доклад Сляпенарского вряд ли возможно. Суть его сводилась к следующему. Лет десять назад Сляпенарский наткнулся в одном из менее известных трудов Мёбиуса на утверждение, поразившее его воображение. По словам Мёбиуса, теоретически не существовало причин, по которым поверхность не могла бы утратить обе свои стороны, то есть, иными словами, стать «нульсторонней».

Разумеется, пояснил профессор, такую поверхность невозможно представить себе наглядно, так же как квадратный корень из минус единицы или гиперкуб в четырехмерном пространстве. Но абстрактность понятия отнюдь не означает, что оно лишено смысла или не может найти применения в современной математике и физике.