ДНК и её человек | страница 19
Подробно про каждый метод рассказывать не будем, только общий принцип в двух словах.
Пиросеквенирование основано на двух фактах: 1) ДНК-полимераза присоединяет к растущей цепочке только комплементарный нуклеотид, некомплементарные присоединять отказывается; 2) когда нуклеотид занимает свое место, отщепляется пара фосфатных групп – пирофосфат (если интересует химическая сторона вопроса, посмотрите на рисунок про секвенирование). Через ячейку, в которой находится секвенируемый фрагмент ДНК, поочередно прокачивают растворы четырех нуклеотидов. Когда приходит нужная буква, пирофосфат отщепляется и запускает каскад реакций с выделением кванта света. Вспышка регистрируется, буква записывается, начинается следующий цикл.
Секвенирование Solexa (Illumina) – то есть технология, разработанная в компании Solexa, позднее приобретенной компанией Illumina. Она тоже использует рост нуклеотидной цепочки. Каждый нуклеотид при этом несет флуоресцентную метку своего цвета и “заглушку” на 3’ – ОН-группе, временно останавливающую синтез. Нуклеотид присоединился – лазерный импульс заставил метку флуоресцировать – свечение зарегистрировано – специальный реагент удаляет флуоресцентный довесок и заглушку с 3’ – конца – цикл можно повторять.
Ионное полупроводниковое секвенирование, оно же секвенирование Ion Torrent и рН-опосредованное секвенирование, не использует ни меченых нуклеотидов, ни оптических датчиков. Присоединение очередного нуклеотида сопровождается высвобождением не только пирофосфата, но и протона Н+ – вот этот протон, точнее, локальное изменение рН на микрочипе, и регистрируется чувствительным датчиком.
Все эти методы на самом деле требуют присутствия множества копий молекулы-матрицы (и, соответственно, довольно сложной пробоподготовки). Но уже появилось секвенирование единичных молекул ДНК или РНК. Так, одномолекулярное секвенирование в реальном времени, разработанное компанией Pacific Biosciences, позволяет детектировать свечение единичного нуклеотида с флуоресцентной меткой, присоединяемого к цепочке. Важно, что таким методом можно читать очень длинные молекулы – десятки тысяч нуклеотидов, то есть не нужно разрезать ДНК на мелкие кусочки, а потом собирать.
А совсем недавно, всего несколько лет назад, появились приборы, использующие фантастически красивый метод – нанопоровое секвенирование. Это уже секвенирование третьего поколения! Представьте себе реакционную камеру с раствором электролита, разделенную на две части мембраной. В мембране есть маленькая пора, по размеру такая же, как те, через которые молекулы транспортируются в живую клетку. Между двумя половинами камеры имеется разность потенциалов, из-за чего возникает ток ионов через пору. А когда через эту пору проходит молекула ДНК (она проникает туда под действием напряжения, как при электрофорезе, или ее направляет специальный фермент) – тогда азотистые основания А, Т, G, С по-разному перекрывают просвет поры, сила тока падает и снова возрастает, ее колебания можно регистрировать и таким образом получить последовательность нуклеотидов. Своего рода молекулярная морзянка.