Ядерные излучения и жизнь | страница 53
От каких же факторов зависит эффективность деятельности восстановительной системы? Некоторые из этих факторов нам уже известны. Прежде всего это частота митозов: если она достаточно высока, интервал между облучением и митозом по крайней мере частично обеспечивает возможность восстановления. Снижение частоты митозов, достигаемое любым возможным методом (гипотермия, гипоксия, введение антимитотических средств типа колхицина, уретана, адреналина и т. п.), дает более или менее значительный противолучевой эффект главным образом благодаря деятельности восстановительной системы.
Реакция торможения митозов является у высокоорганизованных живых существ стереотипным, неспецифическим ответом на самые разнообразные воздействия. Шум, яркий свет, электрические и механические раздражения, колебания температуры и действие других физических и химических агентов более или менее значительной интенсивности - все они вызывают кратковременную, но ясно выраженную реакцию торможения митозов.
Можно полагать, что эта реакция имеет двоякое значение для жизнедеятельности организма. С одной стороны, она как бы сосредоточивает клетки на выполнении их специфической деятельности, в той или иной степени необходимой для правильного ответа на действующий раздражитель; не отвлекаясь для митотического деления, клетки, ткани и органы, очевидно, функционируют более полноценно. С другой стороны, реакция торможения митозов как бы заблаговременно мобилизует организм на борьбу с возможной опасностью, переводит его в состояние максимальной устойчивости и сопротивляемости, причем важнейшее значение имеет создание оптимальных условий для деятельности восстановительной системы.
Помимо частоты митозов эффективность работы восстановительного механизма ограничивается еще и размером повреждения. Если в молекуле ДНК одновременно разрываются обе нити, то такой разрыв чаще всего уже не восстанавливается: отсутствует образец, по которому ферменты темновой реактивации осуществляют ресинтез поврежденной полинуклеотидной цепи. Виды излучений, отличающиеся большей величиной линейных потерь энергии, большей плотностью ионизации (нейтроны, протоны, альфа-частицы и более тяжелые многозарядные ядра), вызывают в клетках более грубые повреждения, чаще обусловливают появление двойных разрывов в молекулах ДНК, которые почти не восстанавливаются. В этом одна из причин высокой биологической эффективности подобных излучений, их опасности для живых клеток и организмов.