Ядерные излучения и жизнь | страница 50



Если фермент фотореактивации попросту расщепляет димеры тимина, то ферменты темнового восстановления, имеющие дело с более грубыми и разнообразными повреждениями ДНК, действуют иначе (рис. 5). Сначала поврежденный участок молекулы ДНК (одной ее цепочки) удаляется вместе с соседними неповрежденными нуклеотидами; благодаря второй цепочке целостность молекулы при этом не нарушается. Затем к месту дефекта поступают строительные материалы: азотистые основания, фосфаты, сахара, и целостность "оперированной" нити ДНК восстанавливается. Азотистые основания на отремонтированном участке выстраиваются не как придется, а в том же порядке, в каком были в нити ДНК до облучения. Это достигается благодаря присутствию второй, комплементарной нити, каждое азотистое соединение которой подбирает себе строго определенную пару. Восстанавливается, таким образом, не только целостность структуры молекулы ДНК, но и полный объем наследственной информации, закодированной в ней. Каждый этап темновой репарации (удаление повреждения, расширение дефекта, синтез нового участка цепи, сшивание нити) осуществляется при участии отдельного фермента или ферментной системы.

Чтобы установить все детали этого процесса, ученым Р. Сэтлоу и П. Говард-Фландерсу пришлось осуществить очень тонкие опыты на культурах облученных микробов, размножающихся в среде с тимином, содержащим метку, - радиоактивный атом трития Н3 (тяжелого изотопа водорода). Им удалось показать, что у бактерий, чувствительных к облучению, вся метка оказалась включенной в ДНК, тогда как у устойчивой к радиации культуры микробов часть метки содержалась в небольших фрагментах ДНК, очевидно, удаленных из молекулы в процессе ее ремонта. В других исследованиях в качестве метки был использован искусственный аналог тимина - 5-бромурацил.

ДНК, отремонтированная группой ферментов темновой реактивации, способна, как показали специальные исследования, к удвоению и к передаче наследственной информации, что является гарантией высокого качества проведенного ремонта.

Итак, микроорганизмы и клетки более сложно устроенных живых существ обладают очень точным и быстродействующим ферментативным механизмом, осуществляющим "текущий ремонт" молекул ДНК, исправление возникающих в них лучевых дефектов - защиту ДНК от разрушительного действия излучений.

Рис. 5. Схема процесса темнового восстановления структуры ДНК, поврежденной радиацией а - двойная цепочка ДНК с дефектом (димер темина), б - разрыв дефектной цепи, в - удаление поврежденного участка нити ДНК, г - восстановление исходной структуры ДНК