Занимательная микроэлектроника | страница 35
Давайте разберемся немного в важнейших разновидностях дискретных компонентов. Сейчас немодно проектировать схемы на «рассыпухе», в большинстве случаев это и не имеет смысла, поскольку на интегральных микросхемах получается быстрее, дешевле и надежнее. Однако, во-первых, без дискретных элементов все равно во многих случаях не обойтись (посмотрите, сколько их на материнской плате вашего ПК, а ведь эти платы обычно вбирают в себя все самое современное), во-вторых, микроэлектронные схемы работают по тем же законам, что и старинные, на отдельных элементах. А в-третьих, в радиолюбительской и полупрофессиональной практике часто бывает так, что гораздо удобнее применить, например, транзисторный ключ с парой резисторов, чем гоняться по торговым организациям за соответствующей микросхемой, и потом еще мучаться, раскладывая плату под какой-нибудь планарный корпус с шагом 0,127 мм (тем более, что резисторы, скорее всего, так или иначе потребуются).
Из всех полупроводниковых устройств исторически первыми были диоды.
Диод— это простейший полупроводниковый прибор с двумя выводами, характеризующийся тем, что в одну сторону он проводит ток (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую — нет (т. е. превращается в очень большое сопротивление) — одним словом, обладает односторонней проводимостью. Выводы диода, как повелось еще со времен ламповой техники, называют анодом (положительный) и катодом (отрицательный). Не всегда понятно, что означают слова «положительный» и «отрицательный» в приложении к некоторым включениям диодов, потому конкретизируем: если подать на анод положительное напряжение, то диод будет проводить ток. В обратном включении ток не пройдет.
Если подключить диод к регулируемому источнику напряжения, то он будет вести себя так, как показано на рис. 3.1, где представлена т. н. вольт-амперная характеристика диода. Из нее, в частности, следует, что в прямом включении (т. е. анодом к плюсу источника), после превышения некоторого напряжения (U>пр), прямой ток через диод (I>пр) растет неограниченно и будет лимитироваться только мощностью источника. На самом деле без нагрузки Диоды, за редкими исключениями, не включают, и тогда в прямом включении ток ограничивается нагрузкой.
Рис. 3.1.Вольт-амперная характеристика диода
В обратном же включении (катодом к плюсу) ток через диод (I>обр) пренебрежимо мал и составляет от нескольких микро- или даже наноампер для обычных маломощных диодов, до единиц миллиампер для мощных выпрямительных. Причем для германиевых диодов обратный ток намного выше, чем для кремниевых, отчего их сейчас практически и не употребляют. Этот ток сильно зависит от температуры и может возрасти на несколько порядков (от нано- до микроампер) при повышении температуры от-50 до +50 °C, поэтому на графике его величина показана очень приблизительно (обратите внимание, что верхняя и нижняя половины графика по оси токов построены в разных масштабах).