Мистер Томпкинс внутри самого себя | страница 37



— Так вот он какой! — воскликнул мистер Томпкинс. — Я неоднократно слышал об электронном микроскопе, но видеть его мне не приходилось. Скажите, пожалуйста, он действительно дает такое сильное увеличение, что позволяет видеть отдельные атомы?

— Нет, — улыбнулся Сент, — не совсем, но он позволяет видеть более крупные белковые молекулы и это вполне впечатляет. Ведь то что вы можете видеть с помощью электронного микроскопа, по крайней мере в 100 раз меньше, чем самые мелкие объекты, различимые в обычный оптический микроскоп.

— А почему нельзя сделать оптический микроскоп с таким же увеличением? Потому что трудно шлифовать линзы? — спросил мистер Томпкинс.

— Нет, — ответил Сент, — причина не в нашей технологии, а в природе света, как вам известно, свет представляет собой электромагнитные волны длиной примерно в один микрон в видимом диапазоне, в несколько микронов — в инфракрасной области и в доли микрона — в ультрафиолетовой области. Если тело значительно больше длины волны света, который мы используем для его наблюдения, то вы получаете четкое изображение, показывающее его детальную структуру. Но если тело меньше используемой длины волны, то происходит дифракция, и вы получаете лишь расплывчатое пятно диаметром, сравнимым с длиной света. Если вы хотите покрасить стену вашего дома, то вы, естественно, возьмете большую кисть. Художники расписывают стены или рисуют большие картины кистями гораздо меньших размеров —размеры их кистей меньше размеров предметов, изображаемых на картине.

Но если вы хотите нарисовать миниатюру, например, портрет прекрасной дамы на медальоне диаметром в один дюйм, то вам потребуются необычайно тонкие кисточки, так как один мазок обычной кисти, которой рисуют живописцы, покрывает изрядную часть площади, которой вы ограничены. Биологи пытались пользоваться ультрафиолетовыми микроскопами с кварцевыми линзами, пропускающими ультрафиолет.

Глядя в такой микроскоп, вы не видите изображения, но можете сфотографировать его. К сожалению, достигаемое увеличение лишь в 2-3 раза больше, чем у обычного оптического микроскопа, работающего в видимом диапазоне. Существенный шаг вперед был сделан с изобретением электронного микроскопа, и теперь мы можем видеть детальную структуру тел гораздо меньших размеров.


Сами миофибриллы образуют полосы. (Электронная микрофотография летательных мышц шмеля выполнена д-ром Д. Э. Филпоттом из Военно-морской биологической лаборатории в Вудз Хоул (штат Массачусетт); фотография д-ра А. Сент-Дьердьи выполнена Георгием Гамовым)