Что такое жизнь? С точки зрения физика | страница 12
В этом довольно простом и, очевидно, не особенно интересном процессе замечательно то, что он ни в какой степени не связан с какой-либо тенденцией или силой, которая, как это можно было бы подумать, влечет молекулы перманганата из области, где очень тесно, в область, где посвободней, подобно тому как, например, население страны переселяется в ту часть, где больше простора. С нашими молекулами перманганата ничего подобного не происходит. Каждая из них ведет себя совершенно независимо от других молекул, с которыми она встречается весьма редко. Каждая из них как в области большей тесноты, так и в более свободной части испытывает одну и ту же судьбу. Ее непрерывно толкают молекулы воды, и, таким образом, она постепенно продвигается в совершенно непредсказуемом направлении: по прямой в сторону или более высокой или более низкой концентрации. Характер движений, которые она выполняет, часто сравнивают с движением человека, которому завязали глаза на большой площади и велели “пройтись”, но который не может придерживаться определенного направления, и таким образом, непрерывно изменяет линию своего движения.
Тот факт, что беспорядочное движение молекул перманганата все же должно вызывать регулярный ток в сторону меньшей концентрации и в конце концов привести к выравниванию концентраций, на первый взгляд кажется непонятным, но только на первый взгляд. При тщательном рассмотрении на рис. 4 тонких слоев почти постоянной концентрации можно представить себе, как молекулы перманганата, которые в данный момент содержатся в определенном слое, беспорядочно двигаясь, будут с равной вероятностью перемещаться и направо, и налево. Но именно вследствие этого поверхность раздела двух соседних слоев будет пересекаться большим количеством молекул, приходящих слева, а не в обратном направлении. Это произойдет просто потому, что слева больше беспорядочно движущихся молекул, чем справа, и до тех пор, пока это так, будет происходить регулярное перемещение слева направо, пока, наконец, не наступит равновесное распределение.
Если эти соображения перевести на математический язык, то получим дифференциальное уравнение в частных производных, описывающее математически точно закон диффузии
Объяснением этого закона я не буду утруждать читателя, хотя сделать это достаточно просто note 13 . О строгой “математической точности” закона упоминается здесь для того, чтобы подчеркнуть, что его физическая сущность должна, тем не менее, проверяться в каждом конкретном случае. Будучи основана на случайности, справедливость закона будет только приблизительной. Если имеется, как правило, достаточно хорошее приближение, то это только благодаря огромному количеству молекул, которые принимают участие в явлении. Чем меньше их количество, тем больше случайных отклонений мы должны ожидать, и при благоприятных условиях эти отклонения действительно наблюдаются.