Физики о физиках | страница 68



Через двенадцать лет после Зеебека французский часовщик Пельтье наблюдал обратное явление — выделение тепла на границе разнородных проводников при прохождении по ним тока. Но и Пельтье не нашел правильного толкования открытому им эффекту.

В течение чуть ли не столетия интерес к термоэлектричеству появлялся изредка и ненадолго. Были даже построены приборы, однако их коэффициент полезного действия никак не удавалось довести до половины процента, поэтому ни о каком энергетическом использовании их не могло быть и речи. По словам Иоффе, «термоэлектричество снова перешло на задворки курсов физики».

Отчего была такая безнадежность?

Термоэлементы делали из металлов. Теплоносителем в них был «электронный газ» — свободные электроны, двигающиеся внутри кристаллической решетки. Казалось бы, повышение температуры, увеличивая кинетическую энергию электронов, должно привести к большей скорости их движения, то есть к возрастанию электрического тока. На деле такого не получилось. Только квантовая теория металлов объяснила непонятный факт: электроны при больших концентрациях — а в металле их концентрация велика — находятся в так называемом «вырожденном состоянии», когда их энергия почти не зависит от температуры.

Иоффе предложил делать термоэлементы не из металлов, а из полупроводников; электроны в них более тесно связаны с кристаллической решеткой, что влечет за собой иной, чем в металлах, механизм переноса зарядов, то есть иной «механизм» электрического тока.

Природа электропроводности полупроводников была детально раскрыта во многих трудах самого Иоффе и его учеников. Суть ее в том, что в полупроводниках два вида проводимости: электронная и «дырочная». Грубо говоря, электронная проводимость — это обычный электрический ток, движение электронов, а дырочная — движение фиктивных, несуществующих положительных зарядов, по величине равных электронам.

Что такое фиктивный заряд — снова объяснила квантовая теория. В полупроводниках не все нормальные квантовые состояния насыщены электронами. Отсутствие на положенном месте электрона, то есть отрицательного заряда, равносильно присутствию там заряда положительного той же абсолютной величины. Это и есть «дырка». Движение «дырки», то есть перемещение свободного квантового состояния из-за того, что его покидает электрон, соответствует положительному току.

Открытый механизм позволил резко увеличить коэффициент полезного действия термоэлементов. Вот что писал об этом Иоффе: