Числа: от арифметики до высшей математики | страница 28



А что, если нам надо 1/3 умножить на 4? Мы получим ответ 4/3, а что означает такое выражение? Дробь 4/3 может быть представлена в виде 1 + 1/3. или 1>1/>3, или одна целая и одна треть.

В школе учеников обычно приучают к тому, чтобы выделять максимально возможную целую часть из дроби. То есть превращать 4/3 в 1>1/>3, 27/5 в 5>2/>5 и так далее. Однако делать это преобразование не всегда необходимо. На самом деле арифметические действия с 4/3 и 27/5 производить удобнее, чем с 1>1/>3 и 5>2/>5.

По существу, в большинстве случаев стремление выделить целую часть дроби вызвано только природным консерватизмом, а не соображениями целесообразности.

Дроби, меньшие 1, то есть дроби, у которых числитель меньше знаменателя, называют правильными дробями. И наоборот, дроби, у которых числитель больше знаменателя, называют неправильными, то есть даже название этих дробей имеет оттенок неодобрения.

Тем не менее не следует забывать, что действия со всеми дробями производят по одним и тем же правилам. И с математической точки зрения и те и другие дроби равным образом правильные.

Знаменатель вступает в игру

Рассмотрим дробь 6/3. Ее величина равна 2, так как 6/3 = 6 : 3 = 2.

А что произойдет, если числитель и знаменатель умножить на 2? 6/3 × 2 = 12/6. Очевидно, величина дроби не изменилась, так как 12/6 также равно 2. Можно умножить числитель и знаменатель на 3 и получить 18/9, или на 27 и получить 162/81, или на 101 и получить 606/303. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что величина дроби не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби 120/60 (равной 2) разделить на 2 (результат 60/30), или на 3 (результат 40/20), или на 4 (результат 30/15) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны целому числу.

Если числитель и знаменатель дроби 1/3 умножить на 2, мы получим 2/6, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа 1/3 и 2/6 идентичны.

Сформулируем общее правило. Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется. Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.