Простая сложная Вселенная | страница 10



Взглянув на это таким образом и понимая, что мы не состоим лишь из водорода и гелия, что наши тела, Земля, и все окружающее также содержат углерод, кислород и другие элементы, мы делаем вывод, что наше Солнце – звезда второго или, может, даже третьего поколения. Одно или два поколения звезд должны были взорваться, прежде чем их пыль стала Солнцем, Землей и нами. Так что же вызвало их гибель? Почему звезды обречены завершить свои сияющие жизни эффектным взрывом?

Одним из удивительных свойств реакции ядерного синтеза является огромное количество энергии, необходимой для ее первичного запуска, – вес целой звезды! – и затем она выделяет еще больше энергии.

Причина может показаться удивительной, но, когда наблюдаешь происходящее прямо перед глазами, не остается иного выбора, кроме как принять ее: при слиянии двух атомных ядер в одно большее часть их массы исчезает. Получившееся ядро имеет меньшую массу, чем создавшие его два ядра. Это как если бы смесь килограмма ванильного мороженого с еще одним килограммом того же мороженого давала бы на выходе не два килограмма мороженого, а меньше.

В повседневной жизни такого не бывает. Но в ядерном мире это происходит все время. И, пожалуй, к счастью для нас, масса не теряется. Она превращается в энергию в результате обмена по знаменитому уравнению Эйнштейна E = mc>2.[2]

В обыденной жизни мы больше привыкли к обменным курсам по переводу одной валюты в другую, а не массы в энергию. Таким образом, чтобы понять, что E = mc>2 является выгодной сделкой для природы, представьте себе все тот же обменный курс в аэропорту им. Джона Ф. Кеннеди по переводу одного фунта стерлингов (начальная масса) в доллары США (полученная за нее энергия). Обменный курс здесь является с>2, где с – скорость света, а с>2 – скорость света, помноженная сама на себя. Так что за один фунт вы получите 90 миллионов миллиардов долларов. Позволю себе заметить, прекрасная сделка. По сути, это лучший обменный курс в природе.

Очевидно, что недостающая масса в каждой отдельной термоядерной реакции довольно мала. Но каждую секунду в сердце Солнца сливается так много атомов, что количество выделяемой энергии огромно, и она должна куда-то деваться. Так что она выталкивается в космос, подальше от ядра звезды, всеми возможными способами. В конце концов, энергия термоядерного синтеза уравновешивается гравитацией, возвращающей все выброшенное обратно в ядро, делая размер звезды стабильным. Будь гравитация единственным участником реакции, Солнце начало бы сжиматься.