Как работает Вселенная: Введение в современную космологию | страница 36



2.7.1. Космологическая эволюция без космологической постоянной

Рассмотрим вначале простейшую модель, когда Вселенная равномерно заполнена пылевидной материей, т. е. материей, не имеющей давления, с плотностью ρ(t). Выберем произвольную точку, которую будем считать центром Вселенной. Естественно, мы можем взять любую другую точку и назначить ее в качестве центра Вселенной, но из-за однородности Вселенной уравнения и их решения будут теми же.

Рассмотрим сферу радиуса r(t) вокруг этого центра, привязанную к материи и расширяющуюся вместе с ней по закону Хаббла (2.1). Ни один атом или частица материи не могут пересечь эту сферу. Все, что было внутри сферы, остается внутри навсегда, все, что снаружи сферы, всегда будет снаружи, а то, что на поверхности, остается на поверхности. Радиус сферы мал по сравнению со значением c/H, поэтому его изменение нерелятивистское, и мы можем использовать простейший вариант закона Хаббла (2.1) v(t) = H(t)r(t), где v(t) = dr(t) / dt – это скорость расширения сферы с радиусом r(t). Таким образом, H(t) = dr(t) / dt r>−1(t).

Объем шара равен 4πr3/3, масса пылевидного вещества внутри этой сферы равна M = 4πρr3/3. Эта масса остается постоянной во время расширения, поэтому, вводя константу B = 3M/4π, мы получаем закон изменения плотности со временем в виде

ρ(t) = Br(t)–3. (2.8)

Как вы можете видеть, до сих пор не возникло никаких «математических кошмаров». Следующим шагом является получение уравнения, описывающего расширение Вселенной, и выведение из него зависимостей r(t) и H(t).

Прежде чем мы к этому приступим, рассмотрим куда более простую родственную задачу. Где-то в космосе есть сферически симметричная планета с массой М и радиусом R, которая не имеет никакой атмосферы и не вращается, поэтому влиянием этих факторов можно пренебречь. Ее обитатель пинает ногой, щупальцем или псевдоподием футбольный мяч массой m вертикально вверх со скоростью V. Как будет двигаться мяч? Очевидно, что он будет двигаться в радиальном направлении от центра планеты. Улетит ли он в космос или упадет обратно на поверхность планеты (рис. 2.7)?

Как мы можем узнать, что произойдет? Достаточно использовать закон сохранения энергии. Суммарная энергия мяча равна сумме кинетической и потенциальной энергий. Кинетическая энергия в любой момент равна mv2/2, где v – это текущая скорость мяча. Потенциальная энергия гравитационного взаимодействия мяча и планеты равна – GMm/a, где G – гравитационная постоянная, a – текущее расстояние между мячом и центром планеты. Потенциальная энергия отрицательна вблизи планеты и становится равной нулю, если мяч удаляется от планеты на очень большое расстояние. Кинетическая энергия шара всегда неотрицательна. Таким образом, для того чтобы мяч улетел в космос, его полная энергия тоже должна быть неотрицательной. Так как полная энергия сохраняется, это также относится и к его начальной энергии Е, равной