Становление | страница 4
— А если ставить несколько матриц и пуансонов и вытягивать сразу несколько заготовок за один ход? Скажем — десять сможем?
— Десять — сможем. Уже делаем на двенадцать заготовок.
— А двадцать?
— Двадцать не сможем — не хватит мощности пресса.
— Так… А может как-то по-быстрее делать ход? вот у вас сейчас пять ходов в минуту — это пять заготовок… Если увеличить скорость хода в два раза…
— Не получится.
— Э…?
— Скорость деформации будет слишком высокой, соответственно повысится наклеп, металл будет слишком жестким и его начнет рвать — и так сейчас половина уходит в брак.
— Половина?!? Ничего себе… Что же делать?
— Мы сейчас подбираем углы вытяжки — если сделать слишком малым, то деформация за один проход небольшая, но потом при отжиге слишком быстро растут кристаллы и ухудшается пластичность для последующих операций. Ну и производительность тоже уменьшается. А если сделать слишком большим, то инструмент изнашивается сильнее, да и разрывы металлов происходят чаще.
— Понятно. Там у нас исследуют напыление на металлы — зайдите, может у них найдется для вас что-то полезное.
— Хорошо.
И действительно, за пару недель для матриц и пуансонов подобрали покрытие, которое значительно увеличило срок службы одного комплекта — с пяти до почти восьмидесяти тысяч гильз, после чего требовалось повторное напыление и шлифовка, чтобы восстановить поверхность и геометрические размеры. Ну, это если пуансон не растрескивался от внутренних напряжений — с ними иногда такое случалось, когда эти напряжения выходили на поверхность с громким треском — в буквальном смысле этого слова — пуансон вдруг издавал резкий кряк и "радовал" всех свежей трещиной. Это накопленные напряжения все-таки вырывались наружу.
Вообще, мне было несколько странно, что вот так вот можно вытягивать металлы с помощью инструментов из практически такого же металла, ну почти — все-таки пуансоны и матрицы делались из легированной стали, закаливались, да еще на них напылялись износостойкие покрытия. Но секрет был прост — заготовка была в общем случае тонкостенной, и ее металл начинал течь раньше, чем металл пуансона, так как в пуансоне напряжения распределялись по большему объему металла — если сравнивать например гильзу с толщиной стенок в два-три миллиметра на промежуточных стадиях и пуансон толщиной почти сантиметр — в нем напряжения уже по факту меньше в пять раз, а еще напряжения уходили и в матрицу, то есть в инструменте они были меньше уже в десять раз, а за счет состава стали — во все двадцать. Поэтому все и работало — пуансоны продавливали металл заготовки через матрицу, выдавливали металл в нужную сторону, мяли гильзу, прогоняя ее вдоль матрицы заставляли ее металл течь вверх ото дна, пока этот металл не образовывал стенки. И самым сложным было рассчитать и подобрать все эти матрицы и пуансоны — чтобы в каждом проходе металл перетек в нужный объем, но при этом не был превышен предел деформации и сохранилась целостность заготовки, чтобы внутренние напряжения не превысили его стойкости, поэтому приходилось ограничивать степень деформации на каждом из этапов, а еще периодически проводить отжиг, чтобы снять все эти напряжения. А еще и состав металла для заготовок был каждый раз разным…