Античная наука | страница 7
Рационализм ранней греческой науки проявлялся в самых различных формах — и притом не только в области космогонических концепций. Геродот в своих исторических сочинениях и Гиппократ в трактате «О воздухах, водах и местностях» объясняют национальные особенности различных народов свойствами природной среды, в которой они живут. Ярким примером рационализма греческой медицины может служить трактат «О священной болезни», автор которого решительно выступает против объяснения любых болезней действием супернатуральных причин. Укажем еще на сугубо рационалистическую этику Сократа, который считал, что человек поступает дурно лишь по причине своего незнания хорошего и дурного.
Характерно, что упадок античной науки в эпоху Римской империи был связан с резким усилением антирационалистских тенденций. В философских учениях поздней античности — у неопифагорейцев, неоплатоников — все большую роль начинает играть мистика чисел, возрождается мифотворчество. Откровение признается одним из источников знания. С Востока приходят оккультные дисциплины — алхимия, магия. Наука постепенно переставала быть рациональной, а это означало, что она в конечном счете лишалась права называться наукой в собственном смысле слова.
4. К признакам настоящей науки относится, наконец, ее систематичность. Совокупность не связанных внутренним единством разрозненных знаний, даже если они относятся к одной области реальной действительности, еще не образует науки. С этой точки зрения критерию подлинной научности не может удовлетворить вавилонская или египетская математика, сводившаяся к набору алгоритмов или правил для решения отдельных задач. При этом не имеет существенного значения то, что некоторые из этих задач были достаточно сложными (так, например, у вавилонян были разработаны численные методы решения квадратных и кубических алгебраических уравнений) и на определенном этапе превосходили все, что было известно в этой области другим народам, в том числе и грекам. В курсах по истории математики задачи, найденные в вавилонских математических текстах, обычно приводятся с использованием алгебраической символики нашего времени. При этом они становятся на вид более современными и приобретают общность, которая им, вообще говоря, не присуща. Для того чтобы уяснить специфику вавилонской математики, рекомендуется попытаться решить какую-либо из задач, записанных на вавилонских клинописных табличках, рассматривая ее в ее оригинальной формулировке.