Путеводитель для влюбленных в математику | страница 28
Проверьте, так ли это, возведя оба ответа в квадрат.
Если a = –b, решение будет таким же.
Итак, затратив некоторые усилия, мы показали, что извлечение квадратного корня из комплексного числа дает комплексное число, поэтому придумывать новые числа для извлечения корней не нужно.
А как насчет кубических корней? Кубический корень из числа c – это такое число x, что x³ = c. Вопрос: входит ли множество корней из комплексных чисел во множество комплексных чисел или нам нужно изобретать еще какие-нибудь новые числа[59]?
Уравнение x³ = c может быть записано иначе: x³ – c = 0. Сформулируем вопрос в общем виде: всякое ли полиномиальное уравнение[60] имеет решение среди комплексных чисел? Скажем, есть ли такое комплексное число x, что
3x⁵ + (2 – i) x⁴ + (4 + i) x³ + x – 2i = 0?
Принципиально важный факт в теории комплексных чисел состоит в том, что любое полиномиальное уравнение имеет комплексное решение! Об этом говорит основная теорема алгебры. На математическом языке данный тезис можно переформулировать так: поле комплексных чисел[61]алгебраически замкнуто.
Вот как звучит это важнейшее утверждение в строгой форме.
Теорема (основная теорема алгебры). Пусть d – положительное целое число и c>0, c>1, c>2, …, c>d – комплексные числа, причем c>d ≠ 0. Тогда существует такое комплексное число z, что
c>dz>d + c>d>– 1z>d>– 1 + … + c>2z² + c>1z + c>0 = 0.
Поле действительных чисел незамкнуто, потому что среди действительных чисел не всегда можно найти решение полиномиального уравнения с действительными коэффициентами (например, среди действительных чисел нет такого числа a, что a × a + 1 = 0. Доказательство общей теоремы алгебры состоит в том, что решение приведенного выше полиномиального уравнение находят в общем виде.
Глава 6
π
Число π завораживает человечество на протяжении многих поколений. Оно проникло в массовую культуру (например, стало названием фильма[62] и маркой одеколона[63]). Школьники отмечают День π и соревнуются, кто запомнит больше знаков числа π после запятой[64].
Пи – шестнадцатая буква греческого алфавита. В математике ею обозначают отношение длины окружности к ее диаметру. Длина окружности в π раз длиннее диаметра, или C = πd. Можно записать иначе: C = 2πr, где r – радиус окружности.
Площадь окружности можно вычислить по формуле S = πr².
С помощью числа π можно определить и площадь сферы – 4πr², а также объем шара –
Эти геометрические формулы не сообщают нам величину числа