Путеводитель для влюбленных в математику | страница 20



Начнем с того, что, если возвести в квадрат 0, получится 0, а если возвести в квадрат 1, получится 1. Наша цель 2, а найденные числа меньше. С другой стороны, если возвести в квадрат 2, мы получим 4, а если возвести в квадрат 3, получим 9. Это больше, чем нам нужно.

1² – слишком ма́ло, 2² – слишком много. Попробуем найти величину между 1 и 2, перемещаясь с шагом 0,1, как показано в таблице.



Легко заметить: 1,4 слишком мало для квадратного корня из двух, а 1,5 – слишком велико. Следовательно, √2 лежит между этими двумя величинами.

Продолжим в том же духе. Будем возводить в квадрат числа между 1,4 и 1,5, двигаясь с шагом 0,01. Мы обнаружим, что 1,41² = 1,9881, а 1,42² = 2,0164. Из этого можно сделать умозаключение, что



Мы можем двигаться таким образом все дальше и дальше, приближаясь к √2

Рано или поздно мы либо успокоимся (достигнув числа, фантастически близкого к

либо почувствуем отчаяние (увидев, что никогда не сможем точно вычислить √2

Но что означает это «точно»?

За границами рационального

Разумный способ определить точное значение числа – представить его в виде рационального числа, то есть отношения двух целых чисел. Если бы мы сумели представить √2 в виде дроби

где a и b – целые числа, мы бы нашли его точное значение.

Увы, но такое невозможно. Однако это нужно доказать.

Теорема. √2 не является рациональным числом.

Будем идти от противного, как и в главе 1, где мы подсчитывали количество простых чисел. Предположим, что √2 – рациональное число. Если это допущение приведет к абсурдным выводам, значит, оно несостоятельно.

Итак, приступим. Если √2 – рациональное число, его можно выразить в виде отношения двух целых чисел:



Возведем обе части тождества в квадрат:



Раскроем скобки:



Таким образом:



или:

2b² = a². (С)

Если a – целое число, мы можем разложить его на простые множители, причем (согласно основной теореме арифметики) одним-единственным способом:

a = p>1 × p>2 × … × p>n.

Проделаем аналогичную процедуру с b:

b = q>1 × q>2 × … × q>m.

Следовательно, левую часть равенства (С) можно представить в таком виде:

2b² = 2 × (q>1 × q>2 × … × q>m)² = 2 × (q>1 × q>1) × (q>2 × q>2) × … × (q>m × q>m).

Несложно заметить, что 2b² раскладывается на нечетное число простых множителей.

Аналогично поступаем с правой частью (С):

a² = (p>1 × p>2 × … × p>n) ² = (p>1 × p>1) × (p>2 × p>2) × … × (p>n × p>n).

В отличие от 2b², выражение a² раскладывается на четное число простых множителей.

Подытожим. В соответствии с нашим предположением 2