Путеводитель для влюбленных в математику | страница 18
Очевидно, что n-ный элемент ряда будет выглядеть так:
Легко убедиться, что все члены ряда (*) меньше 1, потому что числитель всякий раз оказывается меньше знаменателя.
Теперь докажем второе утверждение: если число x меньше 1, рано или поздно найдется элемент ряда (*), превышающий x.
Так как x меньше 1, разность (1 – x) положительна. Даже если x невероятно близок к единице, разница между ними будет мизерная, но положительная. Умножим (1 – x) на одну из степеней десяти:
10ⁿ × (1 – x).
Так как разность (1 – x) положительна, это произведение будет больше 1, если 10ⁿ достаточно велико[39]:
10ⁿ × (1 – x) > 1.
Раскроем скобки:
10ⁿ – 10ⁿx > 1,
перенесем 1 в левую часть, а 10ⁿx в правую:
10ⁿ – 1 > 10ⁿx,
поделим обе части на 10ⁿ:
Что мы выяснили? С одной стороны, все элементы интересующего нас возрастающего ряда меньше 1. С другой стороны, какое бы число x меньше единицы мы ни взяли, рано или поздно возникнет элемент ряда, превышающий x (а последующие будут нарастать и все больше удаляться от x).
Наш ряд неуклонно приближается к 1. Математики говорят, что этот ряд стремится к 1. Или, что то же самое, 1 представляет собой предел ряда.
Значение десятичной дроби с конечным числом символов – это сумма определенного количества десятых, сотых, тысячных и т. д. Например:
К сожалению, язык десятичных дробей с конечным числом символов слишком скуден, чтобы выразить, например, 2/7. Поэтому нам необходимо расширить лексикон.
Значение десятичной дроби с бесконечным числом символов равно пределу ряда, где на каждой ступени элемент прирастает на одну цифру. Это сложно, однако дает нам возможность выражать все числа, используя десятичную систему счисления.
Нужно приложить определенные усилия, чтобы увидеть в бесконечной десятичной дроби предел ряда. Попробуем посмотреть проще.
Вернемся к знакомому нам 0,999999… Пусть:
X = 0,999999… (A)
Умножим обе части равенства на 10:
10X = 9,999999… (B)
Вычтем (A) из (B):
9X = 9,000000…
Теперь поделим обе части на 9 и убедимся, что X = 1. Готово! Все оказалось просто.
Этот фокус можно повторить для любой периодической десятичной дроби. Например:
Y = 0,27272727… (C)
Умножим обе части на 100 (чтобы цифры встали в строй):
100Y = 27,27272727… – (D)
и вычтем (C) из (D):
99Y = 27,000000…
Таким образом, Y = 27/99 = 3/11.
Вот видите[40]! Зачем утруждать себя «сходимостями» и «пределами»? Но с бесконечными последовательностями нужно быть осторожнее. Представим себе сумму: