Стратегии решения математических задач | страница 8
Задача становится геометрической, где ответом является количество сторон и диагоналей «n-угольника». Таким образом, для 10 человек мы получаем 10-угольник, у которого число сторон n = 10. Для определения количества диагоналей можно использовать формулу:
Итак, количество рукопожатий = 10 + 35 = 45.
Решение 7
Конечно, некоторые читатели уже видят, что эту задачу можно легко решить с помощью комбинаторной формулы для определения числа сочетаний из 10 элементов, которые берутся по два за раз.
Впрочем, это решение, хотя оно эффективно, кратко и правильно, практически не требует математического мышления (если не считать применения формулы) и обходится без какого-либо подхода к решению задач. Несмотря на то, что такое решение имеет право на существование, только другие решения позволяют продемонстрировать различные стратегии, а именно с этой целью мы и привели данную задачу.
Мы предполагаем, что вы будете читать эту книгу, решать задачи и, таким образом, знакомиться со стратегиями. Это позволит вам составить собственный набор стратегий решения задач, который станет базовым в решении ваших задач. У тех, для кого решение задач является новым делом, мы надеемся пробудить интерес и подтолкнуть к дальнейшему изучению этого полезного аспекта математики. Те же, кто уже интересуется критическим мышлением и решением задач, найдут здесь новые, занятные и нестандартные задачи, способные захватить внимание. Приятного вам чтения!
Глава 1
Логическое рассуждение
Выделение целой главы такой стратегии, как логическое рассуждение, может показаться излишним. В самом деле, без логического мышления, хотя оно и используется для решения задач, немыслимо применение ни одной стратегии. Для многих людей решение задач является практически синонимом логического рассуждения, или логического мышления. Так зачем же тогда нужна эта глава, и зачем вообще выделять эту стратегию?
В повседневной жизни мы прибегаем к логическому рассуждению, когда спорим о чем-нибудь с кем-то. И это понятно — во время спора мы рассчитываем на то, что определенные доводы будут вызывать конкретную реакцию. На работе мы с помощью логической цепочки доводов добиваемся изменения того или иного производственного процесса. Мы логически выстраиваем цепочку утверждений в надежде на получение желаемого вывода. В суде, например, адвокаты используют логическое рассуждение, чтобы представить дело в нужном им свете. Если мы назначаем кому-то встречу через два дня, а сегодня суббота, то логика подсказывает нам, что встреча должна состояться в понедельник.