Стратегии решения математических задач | страница 41
Задача 5.5
Найдите недостающие цифры в следующем семизначном числе, которое равно произведению трех последовательных чисел. Чему равны эти три числа? 1 2_ _ _ _6.
Обычный подход
Можно просто попытаться угадать, подставляя различные цифры в надежде, что среди них окажутся искомые. Это крайне маловероятно, хотя и возможно.
Образцовое решение
Вместо догадок воспользуемся стратегией анализа экстремальных ситуаций. Наименьшее возможное число равно 1 200 006, а наибольшее — 1 299 996. Поскольку нам нужен ответ, представляющий собой произведение трех последовательных чисел, проанализируем кубические корни из этих экстремумов, чтобы определить примерную величину этих трех чисел.
Кубический корень из 1 200 006 равен примерно 106, а из 1 299 996 — примерно 109. Это значительно ограничивает простор для выбора. Кроме того, в заданном числе в разряде единиц стоит 6. Значит, три искомые последовательные числа должны оканчиваться либо на 1, 2 и 3, либо на 6, 7 и 8, поскольку их произведения дают 6 в разряде единиц. Имея две такие подсказки, не сложно определить, что искомыми числами будут 106, 107 и 108. Их произведение равно 1 224 936. Задача решена.
Задача 5.6
На рис. 5.3 представлен прямоугольник ABCD со сторонами длиной 8 см и 12 см. Найдите площадь закрашенной области прямоугольника.
Обычный подход
Обычно на задачу смотрят с другой точки зрения и вместо определения площади закрашенной области, найти которую требуется по условиям, определяют площадь незакрашенной области и вычитают ее из площади прямоугольника. Незакрашенный треугольник с основанием AB = 12 см и высотой BC = 8 см, имеет площадь
Образцовое решение
Другой подход с использованием той же стратегии выглядит следующим образом. Поскольку точное положение точки E не определено, рассмотрим экстремальный случай, когда точка E совпадает с точкой C, как показано на рис. 5.4.
AC — диагональ прямоугольника, которая делит его пополам. Таким образом, закрашенная область занимает точно половину площади прямоугольника, и ее площадь равна 48 см>2.
Следует заметить, что тот же прием можно использовать и при замене прямоугольника ABCD на параллелограмм. В первый момент такая задача может показаться сложной, однако она решается аналогичным образом.
Задача 5.7
В офисе директора средней школы им. Джорджа Вашингтона висят 50 почтовых ящиков для учителей. Однажды почтальон принес 151 письмо для учителей. Какое наибольшее число писем может