Популярная физика. От архимедова рычага до квантовой механики | страница 37
Этот метод использования параллелограмма может применяться для сложения или разложения любого количества векторов. Данный метод очень часто используется для расчета сил, и поэтому обычно его называют «параллелограммом сил».
Движение Луны
Теперь позвольте нам вернуться к Луне. Относительно Земли она двигается по эллиптической орбите. Однако эллипс, который она описывает в своем вращении вокруг Земли, очень близок по форме к кругу. Луна путешествует по этой орбите со скоростью, которая близка к постоянной.
Хотя линейная скорость Луны почти постоянна, ее векторная скорость, конечно, — нет. Так как Луна перемещается по кривой, направление ее движения в каждый данный момент времени изменяется, и поэтому ее векторная скорость изменяется тоже. Если мы говорим, что векторная скорость Луны непрерывно изменяется, то, конечно, должны сказать, что она подвергается постоянному ускорению.
Если же мы рассматриваем Луну как перемещающуюся с постоянной скоростью по равномерно круговому пути (что является, по крайней мере приблизительно, истинным), то мы можем сказать, что в каждую последовательную единицу времени направление ее движения изменяется на одну и ту же величину. Поэтому она испытывает постоянное ускорение и, согласно второму закону движения Ньютона, должна быть подчинена воздействию постоянной силы. Поскольку изменение в направлении движения всегда направлено к Земле, то ускорение и соответственно сила тоже должны быть направлены к Земле.
Конечно, если имеется сила, притягивающая Луну к Земле, это может быть та же хорошо известная сила, которая притягивает яблоко к земле. Однако, если это было бы так и Луна испытывала бы постоянное ускорение, направленное к Земле при наличии постоянной силы, почему же она не падает на Землю, как делает яблоко?
Чтобы понять, почему этого не происходит, мы должны разложить движение Луны на две составляющие движения, находящиеся под прямым углом друг к другу. Одна из составляющих направлена как стрелка, указывающая на Землю, по радиусу круговой орбиты Луны. Она представляет собой движение в ответ на силу, притягивающую Луну к Земле. Другая составляющая направлена под прямым углом к первой и, таким образом, представляет собой касательную к кругу орбиты Луны. И Луна бы двигалась по касательному движению, если бы не имелось никакой силы, притягивающей ее к Земле. Фактическое же движение лежит между этими двумя составляющими. Луна, другими словами, всегда падает на Землю, но в то же самое время также «отступает в сторону».