Нелокальность | страница 33



Многие физики говорят, что они «взволнованы» тем или иным открытием. Но говорят это так безэмоционально, что нельзя не удивляться: если они ведут себя так, когда взволнованны, насколько ужасно должно быть, когда им скучно. Аркани-Хамед, напротив, говорит о самых простых вещах с таким воодушевлением, что кажется, он только что открыл потерянный ковчег Завета. Однажды он заставил меня восхищаться тем, что строка «1, 2, 3» может быть переписана как «3, 1, 2» или «2, 3, 1», демонстрируя, как много в физике сводится к тщательному подсчету возможных перестановок. Я помню, как стоял рядом с ним в перерыве конференции с чашкой кофе (похоже, всегда в его присутствии пьют много кофе), когда разговор превратился в стремительный внутренний диалог, в котором Аркани-Хамед давал сам себе ответы, в то время как остальные все еще пытались понять вопросы: «Я сделал это, я попробовал то, но это не сработало, но — о, погодите, возможно дело в том, — значит, мм, интересно, следует ли мне…»

«Физика никогда в жизни не внушала мне большего энтузиазма, — выпалил он, когда я впервые поинтересовался новыми методами вычисления. — Происходит что-то действительно захватывающее, я думаю, это могло бы в конечном счете изменить наши представления как о пространстве-времени, так и о квантовой механике… Все это стремительно развивается прямо сейчас благодаря группе порядка 15 человек во всем мире, работающих над этим день и ночь». В 2013 г. их усилия увенчались созданием полноценной альтернативы диаграммам Фейнмана.

Аркани-Хамед считает, что проблема диаграмм Фейнмана в их нарочитой локальности. Они изображают частицы взаимодействующими друг с другом в определенных положениях в пространстве и времени. Диаграммы выглядят обнадеживающе похожими на следы частиц, которые они оставляют в детекторе вроде пластикового стакана у меня в подвале. Именно поэтому физиков и привлек подход Фейнмана. И все же трясина вычислений создает этому свойству диаграмм дурную славу. Локальность напрямую ответственна за появление огромного количества алгебраических членов в расчетах. «Раз вы настаиваете на том, что теория локальна, — говорит Аркани-Хамед, — то в наказание получаете десяток тысяч слагаемых». Считая каждую точку пространства строго независимой от всех остальных, метод Фейнмана преувеличивает сложность мира. Большая часть того, что появляется на диаграммах, не существует в реальном мире, например «виртуальные» частицы и «духовые» поля. Теоретикам приходится вводить специальные правила, чтобы убедиться, что эти незваные гости не останутся на десерт.