Электрический глаз | страница 7
Какие же лучи вызывают фотоэлектрический эффект?
Оказывается, для каждого вещества существует определённая длина световой волны, которая является так называемой «длинноволновой» границей фотоэлектрического эффекта. Это значит, что если лучи имеют длину волны больше этой границы, то они не вызовут никакого фотоэлектрического эффекта, не смогут выбить ни одного электрона. Вы можете, например, бросить на цинковую пластинку какое угодно количество лучистой энергии в виде красных или иных видимых лучей и не получите ни одного вырванного электрона, или, как его ещё называют, фотоэлектрона. Напротив, достаточно совсем небольшого количества света, но в виде ультрафиолетовых лучей, чтобы получить целый рой таких электронов. Именно поэтому в опытах Столетова фотоэффект давали лучи электрической дуги, в которых содержится много лучей ультрафиолетовых.
На большинство металлов, — на такие, как золото, платина, никель, да и вообще на большинство веществ, — действуют только ультрафиолетовые лучи. Лишь у таких металлов, как калий, натрий, цезий и некоторые другие, фотоэлектрический эффект наблюдается и при облучении видимым светом.
Ну, а от чего же ещё, кроме длины волны излучения, зависит число «выбитых» из вещества электронов?
Зависит ли это число от количества падающей на тело световой энергии? Да, зависит.
И эта зависимость вполне определённая. Если какие-либо лучи света выбивают из куска металла электроны, то число таких электронов всегда тем больше, чем больше падает на этот кусок света.
Об этом говорит основной закон фотоэффекта: число вылетающих электронов всегда строго соответствует количеству падающей на тело световой энергии.
Многие исследователи проверяли этот закон различными путями. Одни изменяли силу падающего света, не меняя длину волны, и измеряли число электронов, вылетающих за какой-либо определённый промежуток времени, скажем, за одну секунду, другие давали свет постоянной силы, но меняли время его действия и измеряли количество электронов, вылетающих за разные промежутки времени.
При этом сила света и время освещения менялись в очень широких пределах. Например, силу освещения изменяли в пятьдесят миллионов раз! Но во всех случаях был получен один и тот же результат: для света определённой длины волны на каждую единицу падающей лучистой энергии приходится одно и то же количество вылетающих электронов.
Уже эти закономерности фотоэффекта было очень трудно объяснить первое время, и вот почему. Как мы уже сказали, свет представляет собой поток электромагнитных волн, распространяющихся в пространстве. Это было доказано ещё в XIX веке рядом неопровержимых опытов.