Физические тела | страница 89



и при этом не сломаться.

Внимательный читатель может заметить погрешность в проведенных рассуждениях. Если сместить «центрирующий» при больших оборотах вал из найденного нами положения равновесия и рассматривать только центробежную и упругую силы, то легко заметить, что это равновесие неустойчиво. Оказалось, однако, что кориолисовы силы спасают положение и делают это равновесие вполне устойчивым.

Турбина начинает медленно вращаться. Вначале, когда n очень мало, дробь k/4π>2n>2M будет иметь большое значение. Пока эта дробь при увеличении числа оборотов будет больше единицы, прогиб вала будет иметь тот же знак, что и первоначальное смещение центра тяжести колеса. Таким образом, в эти начальные моменты движения прогибающийся вал не центрирует колесо, а, напротив, своим изгибом увеличивает общее смещение центра тяжести, а значит, и центробежную силу. По мере увеличения числа оборотов n (но при сохранении условия k/4π>2n>2M >1) смещение растет и, наконец, наступает критический момент. При k/4π>2n>2M = 1 знаменатель формулы для смещения l обращается в пуль, значит, прогиб вала становится формально бесконечно большим. При такой скорости вращения вал сломается. При запуске турбины этот момент должен быть пройден очень быстро, надо проскочить критическое число оборотов и перейти к значительно более быстрому движению турбины, при котором начнется явление самоцентрирования, описанное выше.

Но что это за критический момент? Мы можем переписать его условие в следующем виде:

>2M/k = 1/n>2

Или, заменяя число оборотов на период вращения при помощи соотношения n = 1/Т и извлекая корень, в такой форме:

T = 2π∙√(M/k)

Что же за величину получили мы в правой части равенства? Формула выглядит весьма знакомой. Обратившись к стр. 118, мы видим, что в правой части у нас фигурирует собственный период колебания колеса на валу. Период 2π∙√(M/k) — это период, с которым колебалось бы колесо турбины массы М на валу с жесткостью к, если бы мы оттянули колесо в сторону, чтобы оно колебалось само по себе.

Итак, опасный момент — это совпадение периода вращения колеса турбины с собственным периодом колебания системы турбина — вал. В существовании критического числа оборотов повинно явление резонанса.

Глава 6

Тяготение

НА ЧЕМ ЗЕМЛЯ ДЕРЖИТСЯ?

В далекие времена на этот вопрос давали простой ответ: на трех китах. Правда, оставалось неясным, на чем держатся киты. Однако наших наивных прародителей это не смущало.

Правильные представления о характере движения Земли, о форме Земли, о многих закономерностях движения планет вокруг Солнца возникли задолго до того, как был дан ответ на вопрос о причинах движения планет.