Пятьдесят занимательных вероятностных задач с решениями | страница 7



36. Разорение игрока

У игрока M имеется 1 доллар, а у игрока N — 2 доллара. После каждого тура один из игроков выигрывает у другого один доллар. Игрок M более искусен, чем N, так что он выигрывает 2/3 игр. Игроки состязаются до банкротства одного из них. Какова вероятность выигрыша для M?

37. Смелая игра и осторожная игра

Человеку, находящемуся в Лас-Вегасе[3], нужны 40 долларов, в то время как он располагает лишь 20 долларами. Он не хочет телеграфировать жене о переводе денег и решает играть в рулетку (отрицательно относясь к этой игре) согласно одной из двух стратегий: либо поставить все свои 20 долларов на «чет» и закончить игру сразу же, если он выиграет или проиграет, либо ставить на «чет» по одному доллару до тех пор, пока он не выиграет или не проиграет 20 долларов. Какая из этих двух стратегий лучше?

38. Толстая монета

Какой толщины должна быть монета, чтобы вероятность падения на ребро равнялась бы 1/3?

Для решения следующих задач нужно знакомство с принципом симметрии.

39. Неуклюжий химик

В лаборатории имеется несколько стеклянных трубок, каждая длиной в 9 см, помеченных с одного конца красной меткой, а с другого — синей. Споткнувшийся лаборант роняет эти трубки на пол, в результате чего многие из них разбиваются на три части. Какова для таких трубок средняя длина куска с синей меткой?

40. Первый туз

Из хорошо перетасованной колоды в 52 карты, содержащей четыре туза, извлекаются сверху карты до появления первого туза. На каком месте в среднем появляется первый туз?

41. Задача о поездах

(а). На железной дороге N поездов с номерами 1, 2,  ..., N. Однажды вам встретился поезд с номером 60. Угадайте, сколько поездов на железной дороге.

(б). Вы повстречали 5 поездов, причем 60 по-прежнему наибольший номер. Снова постарайтесь угадать, сколько всего поездов на железной дороге.

42. Короткий кусок стержня

(а). Если стержень ломается случайным образом на две части, то какова средняя длина меньшего куска?

(б). (Для лиц, знакомых с интегральным исчислением.) Каково среднее отношение длины короткого куска к длине длинного куска?

43. Сломанный стержень

Стержень ломается случайным образом на три части. Найти средние длины короткого, среднего и длинного кусков.

44. Выигрыш в небезобидной игре

Игра состоит из последовательности партий, в каждой из которых вы или ваш партнер выигрывает очко, вы — с вероятностью p (меньшей, чем ½), он — с вероятностью 1 − p. Число игр должно быть четным: 2, 4, 6 и т. д. Для выигрыша надо набрать больше половины очков. Предположим, что вам известно, что