Пятьдесят занимательных вероятностных задач с решениями | страница 19



− 1/(2>n − 1) занять второе место.

17. Решение задачи о рыцарях-близнецах

(а). Обозначим близнецов через A к B. Пусть A занимает высшую ступень турнирной лестницы. Если B занимает смежное место, что происходит с вероятностью 1/7, то они заведомо встретятся в первом туре. Вероятность того, что B находится в паре, соседней с парой A, равна 4/7, и вероятность того, что они встретятся в этом случае, равна 1/7, так как для осуществления этого события каждый должен победить в первом поединке. Наконец, вероятность того, что B находится в нижней половине, равна 4/7, и в этом случае вероятность встречи равна 1/2>4 = 1/16, так как оба должны выиграть в двух турах. Таким образом, полная вероятность встречи равна

(б). Заметим, что в турнире двух рыцарей близнецы заведомо встретятся. При 2² = 4 участниках вероятность такого поединка равна ½, для случая 2³ = 8 рыцарей, как уже было подсчитано, вероятность равна 1/4 = 1/2>n. Кажется естественным предположить, что в турнире 2>n рыцарей искомая вероятность равна 1/2>n − 1.

Докажем справедливость этого предположения с помощью метода математической индукции. Рассмотрим сначала случай, когда рыцари находятся в разных половинах турнирной лестницы. Как известно из задачи о теннисных турнирах, эта вероятность равна 2>n − 1/(2>n − 1). Если A и B находятся в разных половинах турнирной лестницы, то они могут встретиться лишь в финальном поединке. Вероятность выйти в финал для каждого рыцаря есть 1/2>n − 1, так как для осуществления этого события необходимо выиграть во всех предыдущих турах. Вероятность того, что A и B достигнут финала, равна (1/2>n − 1)² = 1/2>2n − 2. Итак, вероятность встречи рыцарей из разных половин таблицы равна

[2>n − 1/(2>n − 1)]·(1/2>n − 2).

К этой вероятности следует прибавить вероятность поединка близнецов, которые оказались записанными в одну и ту же половину таблицы. Вероятность последнего события равна (2>n − 1 − 1)/(2>n − 1), и, согласно индукционному предположению, вероятность схватки между близнецами в турнире из n − 1 тура равна 1/2>n − 2. Итак, вероятность встречи равна

что и доказывает наше утверждение.

18. Решение задачи о равновесии при бросании монет

Расположим 100 монет в ряд слева направо и будем бросать каждую. Вероятность какой-то заданной последовательности, составленной из 100 гербов и решек, равна (1/2)>100 в силу независимости испытаний. Например, вероятность того, что вначале выпадет 50 гербов и затем 50 решек, равна (1/2)